
Abstract. The structure and spatial positions of dynamic
gratings responsible of steady-state four-wave mixing are
determined for nonlinear media with a nonlocal response.
It is shown that an analytic solution found for a double
phase-conjugate mirror is fundamental and that it can be
used to obtain solutions for such a mirror when two pump
beams are present.

1. Introduction
Four-wave mixing (FWM) in dynamic transmission gratings
(Fig. 1) formed in photorefractive crystals (PRCs) with a
nonlocal response has been attracting interest for a fairly
long time [1 ^ 4]. A theoretical analysis of steady-state FWM
can be based on the solution of a system of coupled-wave
equations, from which it followsöas demonstrated by for-
mula (3.56) in Ref. [2]ö that the amplitude of a dynamic
grating changes with the depth in a PRC and that the grating
lines are directed along the bisector of the angle of conver-
gence of the beams which generate the grating (Fig. 1).

A steady state established after the arrival of beams 1,
2, and 3 in a PRC (Fig. 1), which does not initially contain
a refractive-index grating, has been investigated in detail
[1 ^ 4]. The difference between the phases of the interacting
waves (Fÿ j1 � j2 ÿ j3 ÿ j4) can assume two possible val-
ues: 0 or p. These two values correspond to the formation of

dynamic gratings identical in structure but shifted by half
their period relative to one another. The solutions for these
two values of F differ only in the sign of the amplitude of
the fourth wave which is generated. Therefore, in an analysis
of FWM in a PRC it is usual to consider the specific case
when F � 0.

Cronin-Golomb et al. [1] obtained two more solutions for
which the phase differenceF assumes the valuesF(0) � p and
F(l) � 0 at the opposite boundaries of a PRC for these sol-
utions, the energy exchange efficiency should be less than
the efficiency of the traditional energy exchange. It was found
later [5] that one of these solutions is unstable.

The main effort has been concentrated so far on an anal-
ysis of the characteristics of the interacting waves, but hardly
any attention has been given to the structure of a dynamic
grating responsible for FWM, although it is the grating
that determines the whole energy exchange process. For
this reason, our aim will be to investigate the structure of
dynamic gratings formed in a PRC under FWM conditions.

We shall obtain an analytic solution describing the struc-
ture of dynamic gratings, which makes it possible to analyse
steady states, to propose ways of attaining such states, and to
show that the solution for a double phase-conjugate mirror
(DPCM) is fundamental: this solution can be used to derive
general solutions, i.e. when all beams are present at the entry
to a PRC [we recall that in a DPCM the process of phase con-
jugation of beams 3 and 2 occurs in the absence of beams 1
and 4 (Fig. 1) at the PRC faces through which they enter].

2. Equations describing the structure of a
dynamic grating
The system of coupled-wave equations for steady-state
FWM in a PRC with a nonlocal diffusion-type response
can be written as follows [1 ^ 4]:

dA1

dz
� g�A1A3 � A2A4 cosF�A3 ,

dA3

dz
� ÿg�A1A3 � A2A4 cosF�A1 ,

(1)
dA2

dz
� g�A1A3 cosF� A2A4�A4 ,

dA4

dz
� ÿg�A1A3 cosF� A2A4�A2 ,

where An exp (ijn) � En
���
J
p

is the normalised complex ampli-
tude of the n th wave; gl is the coupling constant of the PRC; l
is the PRC length (Fig. 1); J � J1 � J2 � J3� J4 � const is
the total intensity of the interacting beams.

As pointed out above, the steady-state phase difference
F � j1 � j2 ÿ j3 ÿ j4 can assume one of two values: 0 or p.
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Figure 1. Schematic diagram of four-wave mixing in a photorefractive
crystal with a transmission grating: (1 ^ 4 ) interacting beams; (5 ) curve
demonstrating localisation of a dynamic grating (Dn) in the presence of a
two-sided phase-conjugate mirror and of beams 3 and 2 of equal intensi-
ties when gl4 1.



We can easily see that, if F � p, the replacement of A4 with
ÿA4 transforms the system of equations (1) into the system
for F � 0. Therefore, it is usual to solve the system (1) on the
assumption that F � 0 [1 ^ 4]. It was shown in Ref. [2] that
one can go over from the system of equations (1) to the follow-
ing equation describing the behaviour of a dynamic grating:

d2 lnB
dz2

� ÿ4g2B 2 , (2)

where

B � �A1A3 � A2A4 cosF� . (3)

The solution of Eqn (2) is

B � C
cosh�2gzC � b� (4)

and it contains two constants of integration: b and

C � 1
2 �U 2 � 4B 2�1=2 � const ,

where

U � A2
3 � A2

4 ÿ A2
1 ÿ A2

2 .

The envelope of a grating described by expression (4),
represented by curve 5 in Fig. 1, is a stationary soliton. Its
maximum is located in the section z � ÿb=2gC and, the
higher the value of C, the narrower is the distribution of
this soliton. Since B is a real quantity, we shall introduce a
new variable

u�z� � g
�z
0
B�z 0� dz 0 . (5)

The system of equations (1) then splits into two systems, of
two equations each, for waves 1, 3, and 4, 2, respectively. The
solutions of these two systems of equations are found readily:

A1;3 � D1;2 cos u�D2;1 sin u ,
(6)

A2;4 � E1;2 cos u� E2;1 sin u .

Here, the plus sign corresponds to the first subscript and the
minus sign to the second subscript; the amplitudes En and Dn
are found from the boundary conditions. The solution
described by the set of expressions (6) readily yields the
characteristics of energy exchange between the interacting
beams, for example, the dependence of the phase-conjugate
reflection coefficient [Rm � J4(0)=J3(0)] on the coupling con-
stant gl, plotted for various values of J1(0) in Fig. 2.

If J1(0) � 0, when a DPCM is formed, the threshold of its
appearance can be seen clearly (gl � 2). The curve describing
a DPCM is a boundary separating two classes of solutions.
The curves for J1(0) 6� 0, located to the left of this boundary,
represent solutions of class 1 for which the phase difference is
F � 0 over the whole thickness of the PRC. The situation is
more complex for solutions of class 2 [F(0) � p]. The latter
exist if gl > 2 and J1(0) 6� 0, and they are represented by
loop curves located to the right and below the boundary curve
of the DPCM. Solutions of class 2 are double-valued [1]. Our
analysis and other investigations [5] show that the lower
branches of the loops describe unstable solutions and the
upper branches correspond to stable solutions.

We shall consider in more detail these two classes of sol-
utions and find the structure of the dynamic gratings that
correspond to these two classes. We shall begin with the sit-
uation at the boundary corresponding to a DPCM.

3. Characteristics of a double phase-conjugate
mirror
A DPCM appears in a PRC when only two beams, 3 and 2
(Fig. 1), are incident on this crystal. Solution of Eqn (5) can
then be represented in the form

J1�l� � J3�0�Z , J3�l� � J3�0��1ÿ Z� ,
(7)

J2�0� � J2�l��1ÿ Z� , J4�0� � J2�l�Z ,

where Z � sin2 u(l ) is the diffraction efficiency of a dynamic
grating. Introducing x � exp (2Cgl ) and y � exp b, we obtain
the following equations for finding x, y, and Z:

xÿ 1
x� 1

� ln x
gl

, (8)

y2 � 1ÿ J23x
x�J23 ÿ x� , (9)

Z � �1ÿ J23xm��J23 ÿ xm�
J23�1� xm�2

, (10)

where J23 � J2(l )=J3(0) is the ratio of the intensities of the
beams incident on the PRC and xm are the roots of Eqn (8),
governed only by the coupling constant gl.

If gl4 2, Eqn (8) has only one solution (x1 � 1) charac-
terised by Z1 4 0, i.e. aDPCM is not formed.The second root,
x2 > 1, appears only for gl > 2 and this root is characterised
by 04Z2 4 1. We then find that ln x2 ! glc with increase in
gl, and that Z2 ! 1 if J23 � 1. For J23 � x2 or 1=x2, the
parameter Z2 vanishes, i.e. the range of existence of the sol-
ution with a DPCM is limited to 1=x2 < J23 < x2. It
follows from Eqns (8) and (10) that Z2 is governed by two
parameters gl and J23. Replacement of J23 with 1=J23 does
not alter Z2 (Fig. 3a). The maximum of Z2 is reached at
J23 � 1.

The structure of a dynamic grating is described by the
following expression:

B�z� � ln x2

�
2glcosh

�
ln x2

�
z
l
ÿ 1
2

� ln��1ÿ J23x2�=�J23 ÿ x2��
2 ln x2

���ÿ1
. (11)

We can see that, if J23 � 1, the grating is localised exactly in
the middle of the PRC. If J23 6� 1, the grating is shifted away
from the centre in the direction of the beam with a lower
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Figure 2. Dependences of the coefficient representing reflection with
phase conjugation [Rm � J4(0)=J3(0)] on the coupling constant gl, plotted
for different values of J1(0).
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intensity (Fig. 3b). However, if J23 lies outside the range

2x2
x22 � 1

4 J23 4
x22 � 1
2x2

,

the maximum of the grating described by expression (11) is
outside the crystal and as J23 approaches the boundaries of
the range of existence of the DPCM, the grating reflection
maximum is shifted to infinity and this suppresses the mir-
ror. It follows from Fig. 3b that variation of the ratio of
intensities of beams 3 and 2 can be used to control the posi-
tion of a dynamic grating in a PRC.

4. Solution for J1(0) 6� 0

Fig. 4 shows how the intensities of the interacting beams
change with the depth of a PRC for two classes of the
steady-state solutions mentioned in Section 3.The traditional
energy transfer from beams 3 and 2, to beams 1 and 4, respec-
tively, occurs for the class 1 solution (Fig. 4a). The class 2
solution demonstrates a more complex energy exchange.
Beam 3 is amplified, depleting totally the energy of beam 1,
in the front part of the crystal (04 z4 lsh).The reason for this
nontraditional direction of energy transfer is the presence of
beam 4 at the boundary z � lsh [J4(lsh) 6� 0], which makes it
possible to satisfy the condition F(0) � p. A DPCM forms in
the rest of the crystal (lsh 4 z4 l ) and the energy from
beam 3 returns in part to beam 1. In contrast to the non-
monotonic energy exchange between beams 1 and 3, the

transfer of energy from beam 2 to beam 4 is unidirectional,
but it is less efficient than in the case of the class 1 solutions.

These features are expected because, for the class 2 solu-
tions, F assumes two different values at the opposite faces of
the PRC, whereas it follows from the initial equations that F
should be constant. This contradiction is resolved by match-
ing, in the z � lsh section, two solutions with F � p (in the
part of the crystal where 04 z4 lsh) and F � 0 (lsh 4 z4 l ).

It follows from the system of equations (1) that evolution
of the waves interacting in the crystal is subject to the con-
dition of conservation of the total intensity of the
concurrent beams, i.e. J1(z)� J3(z) � JS1 � const and
J2(z)� J4(z) � JS2 � const. Then, if both waves 3 and 1
(Fig. 1) are present at the entry to the crystal, then for the
class 1 solutions we can imagine that our crystal grows to
the left of the z � 0 face reaching a thickness lsh such that
J1(ÿ lsh) � 0. A DPCM with J3(ÿ lsh) � JS1 forms in such
a lengthened crystal of thickness l � lsh. For the class 2 solu-
tions, a mirror forms in a shortened crystal of thickness l ÿ lsh
andwe have J3(lsh) � JS1. Solutions of both classes can thenbe
found simply by shifting the boundary lsh and by using the sol-
ution for a DPCM.

The above analysis makes it possible to obtain readily the
equations for finding the roots xm and the shift lsh:

xÿ 1
x� 1

� ln x� lnY
gl

, (12)

lsh � l
lnYm

ln xm � lnYm
, (13)

where

Y �
�
1�

�
J1x
J3

xÿ J23
J23xÿ 1

�1=2��
1ÿ

�
J1
J3x

J23xÿ 1
xÿ J23

�1=2�ÿ1
;

J23 � JS1=J2(l ); Ym is the value of Y at x � xm. In Eqns (12)
and (13) and subsequently the upper sign applies to F � 0
and the lower to F(0) � p. We can easily see from the defi-
nition of Y that, if J1 ! 0, then also lsh ! 0 when Eqn (12)
reduces to Eqn (8).

Having found xm, we can now determine Z from Eqn (10)
and the intensity of beam 4 from the following expression,
which is deduced from the general solution given by defini-
tion (5):

J4�0� � J2�l�
���1ÿ Z�J1�0�

JS1

�1=2
�
�
Z
�
1ÿ J1�0�

JS1

��1=2�2

.

(14)
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Figure 3. Dependences of the diffraction efficiency Z of a dynamic gra-
ting in the presence of a double phase-conjugate mirror (a) and of the
positions of the maximum of its distribution (b) on the ratio of the inten-
sities of the grating-forming beams, plotted for different coupling con-
stants gl. The region occupied by the photorefractive crystal is shown
shaded.
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Figure 4. Variations, across the thickness of a photorefractive crystal, of
the intensities of four interacting beams Ji and of the envelope of a dyna-
mic grating B for class 1 (a) and class 2 (b) solutions.
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The structure of a dynamic grating B is still described by
expression (11), but subject to the substitutions z! z� lsh,
l ! l � lsh, x2 ! xm, J23 � JS1=J2(l ). Fig. 5 shows the
dependences of the position of the grating envelope maxi-
mum on the intensity of beam 1 for the two classes of
solutions when the total intensity of beams 1 and 3 is
equal to the intensity of beam 2, and the coupling constant
is gl � 10. It is clear from Fig. 5 that the grating position is
more sensitive to the ratio of the interacting beam intensities
than in the case of a DPCM (Fig. 3b).

If F(0) � 0 and J1(0) 6� 0, the maximum of B is shifted
towards the crystal face through which beam 1 enters, i.e.
the grating is `attracted' to this face. This occurs in the
absence of a dynamic grating in a PRC at the moment of
entry of beam 1 and also when a DPCM is present and
beam 1 in phase with beam 3 or beam 4 in phase with
beam 2 enters the crystal. The grating B then shifts to the
face through which the additional beam enters the crystal.

According to Ref. [5], the class 2 solutions can be
obtained if a weak beam (4 )is phase-shifted by p. However,
there is a simpler way: beams 1, 3, and 2 are directed to a PRC
withoutadynamicgrating;asteadystate,describedbyaclass 1
solution, is then established; the difference between the phases
of beams 1 and 3 is altered by p; a state described by a class 2
solution is then obtained. The difference between the two
classes of solutions consists, in particular, in the different
direction of the shift of the maximum of B relative to its posi-
tion in a DPCM. For a class 2 solution, the grating is
`repelled' by the face through which beam 1 enters (Fig. 4).

Class 1 solutions are obtained for any intensity of beam 1
since the procedure of `crystal enlargement' can be continued
to infinity. However, in the case of a class 2 solution, the
intensity of beam 1must be finite since the coupling constant
g(l ÿ lsh) cannot be less than 2, because otherwise the condi-
tion for the formation of a DPCM is not obeyed. This is
illustrated clearly in Fig. 6 where the dependences of lsh on
the intensity of beam 1 at the entry are plotted for several val-
ues of gl. The lower of the two branches of the solution shown
in Fig. 6 is stable. It follows from Fig. 6 that the class 2 sol-
utions are obtained in a limited range of J1(0). If J1(0) is

outside this range, then a class 1 solution is obtained, but
with F � p.

5. Conclusions
A shifted dynamic grating in a PRC with a large coupling
constant is localised in a limited part of this crystal and the
degree of localisation increases with increase in the coupling
constant. A change in the ratio of the intensities of beams 3
and 2 (for a DPCM) or in the ratio of the intensities and
phase differences of beams 1 and 3 (for a conventional
phase-conjugate mirror) can be used to control the spatial
position of such a dynamic grating (Figs 3 and 4). This effect
can be utilised for spatial positioning of beam 4 or of an
additional beam 5, diffracted by a grating formed in a
PRC with a scheme of the kind shown in Fig. 7.
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