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ABSTRACT

Imaging of surfaces with carbon nanotube probes in tapping mode results frequently in complex behavior in the amplitude −distance curves
monitored. Using molecular mechanics simulations, we calculate the force exerted on a nanotube pressed against a smooth surface as it
undergoes deformation and buckling. This nonlinear force is then used in a macroscopic equation, describing the response of a damped
harmonic oscillator, to predict the amplitude response of a nanotube AFM probe. Similarities between the prediction and experiment suggest
that the complex amplitude response seen in the experiment may be explained by the nonlinearity in the force exerted on the nanotube and
thus must not necessarily be related to the structure of the surface.

Single-wall carbon nanotubes (SWNTs) used as atomic force
microscopy (AFM) probes have several advantages over
conventional silicon tips due to their strength, elasticity, high
aspect ratio and smaller dimensions.1 For example, they are
chemically inert and can sustain significant loads without
breaking, although they routinely achieve better resolution
than conventional tips. In addition, they are capable of
nondestructive imaging of soft samples such as organic
molecules.2 However, when used in tapping mode imaging,
the carbon nanotube attached to the AFM tip may deform,
thereby influencing the amplitude response recorded and
complicating its interpretation.

Although deformations in carbon nanotubes with both ends
fixed are well understood,3 deformations in nanotubes with
one end free, which are important in imaging applications
of nanotube AFM probes, have been studied less. Modeling
of such interactions was done with simple macroscopic
models,4,5 or by considering only linear elastic deformations.6-8

A better understanding of the response dynamics of nanotube
AFM probes could help to better assess their capabilities and
limitations in imaging. In this Letter, we present a full
atomistic description of a nanotube AFM probe forced into
contact with a surface using molecular mechanics simulations
based on a realistic interatomic potential for carbon. The
simulations yield a force response describing the nanotube
nonlinear elastic deformation dynamics. The force response
is then used to predict the macroscopic amplitude of the AFM

cantilever in tapping mode imaging, which is compared to
experimental results.

The fabrication and characterization of SWNT tips used
in the AFM experiment has been described previously.9

Briefly, SWNTs were grown by chemical vapor deposition
on a silicon wafer decorated with iron nanoparticles. These
SWNTs were attached to gold-coated silicon AFM tips
(Multi-75, Budget Sensors) to form “nanotube probes” using
the pickup technique of Hafner et al.10 A Digital Instruments
(Santa Barbara, CA) Multimode AFM with a Nanoscope IV
controller was used for this work. Subsequently, force-
distance curves of these nanotube probes were generated,
which consist of scans of the damped oscillation amplitude
as a function of the average tip-sample separation for a
given cantilever driving voltage.

Experimental observations of imaging with nanotube AFM
probes in the tapping mode suggested that the protruding
nanotube probe might buckle at some point after establishing
contact with the surface. The experimental oscillation
amplitude of the probe displays a complex response as a
function of the equilibrium tip-surface distance (Z). An
example of the complex behavior is shown in Figure 1 for
a 5( 1 nm diameter, 100 nm long SWNT tip tapping on a
highly-ordered pyrolytic graphite (HOPG) surface. A pattern
of maxima and minima at different distances to the surface
is observed for free-air amplitudes of 14, 26, and 42 nm. A
question arises as to whether these patterns appear as a result
of multiple probe buckling or surface irregularities or* Corresponding author. E-mail: giapis@cheme.caltech.edu.
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displaced extraneous matter on the surface. It is shown herein
that the nonlinearity in the force response resulting from a
single buckling of a nanotube on a smooth surface can give
rise to such complex behavior.

The molecular mechanics (MM) simulations of nanotube
deformations during AFM imaging were performed with a
code developed by Brenner,11 which implements a reactive
bond order (REBO) potential for hydrocarbons.11 REBO was
shown to correctly reproduce the energy of a variety of
structural arrangements of carbon, including a 3-coordinated
configuration in a graphene sheet. The potential has shown
a great degree of transferability and should be capable of
describing changes in local geometry such as those occurring
during both linear and nonlinear elastic deformations in
nanotube walls. Previously, REBO has been extensively used
for modeling of carbon-based nanostructures and applied to
simulations of mechanical deformations in nanotubes.12-15

The main configuration representing the interaction of the
nanotube probe with a flat substrate used in current simula-
tions is shown in Figure 2. The embedded top end of the
nanotube is initially slanted, mimicking its attachment parallel
to the side of the pyramidal silicon tip, for which typical
half cone angles are in the range 20-30°. Because only
nearest neighbor interactions between carbon atoms are
considered, it was sufficient to immobilize atoms within 10
Å of the top of the nanotube, whereas the rest of the atoms
were allowed to move according to forces acting on them
from other atoms and the substrate.

The HOPG substrate was modeled with a continuous wall
potential16 representing an average force field created by
atoms occupying a bottom half space with number density
n. The interaction of each atom in the nanotube with the
HOPG surface is given by the wall potentialU(z):

whereV(r) is the carbon-carbon pair interaction (van der
Waals type),z is the distance from the atom to the surface,
andn ) 0.114 Å-3 is the number density of carbon atoms
in the graphite substrate. Assuming a Lennard-Jones (LJ)
form for the pairwise interaction, the wall potential becomes

where σ ) 3.407 Å andε/kB ) 34.4 K are the carbon-
carbon LJ length and energy parameters, obtained by
matching the elastic constantc33 and equilibrium interplanar
distance for graphite, in agreement with ref 17. This idealized
model omits frictional forces in the plane of the substrate,
which may result from atomic corrugations on the surface.

The force-distance curves were obtained by externally
moving the top of the tube along the normal to the surface
in small steps of 0.1 Å and minimizing the energy of the
system for each step using the conjugate gradient method.
Any thermal atomic motions were omitted from the model
to avoid thermal noise in the force response.

Because tubes with experimental sizes (100 nm length, 5
nm diameter) could not be simulated due to computational
power limits, smaller nanotubes (13.7 nm length, 1.3-2.0
nm diameter) were considered instead. Figure 3 shows
snapshots of a geometrical shape of a (10,10) nanotube with
the length of the free endL ) 13.7 nm (14.8 nm total length)
and initial tilt of 30° with respect to the surface normal
pushed against a flat substrate. In Figure 3a, the free end of
the suspended nanotube does not contact the surface. The
elastically deformed nanotube just before buckling is shown
in Figure 3b, while the configuration immediately after
buckling is captured in Figure 3c. The final state of a fully
lowered tube is shown in Figure 3d. The force response for
this nanotube as a function of the probe-surface distance at
three different tilt angles of 20°, 25°, and 30° is shown in
Figure 4, with the four arrows indicating the position of a
30° tilted nanotube in each of the snapshots of Figure 3.

On the initial approach to the surface, there is a negative
force due to a van der Waals attraction between the tube

Figure 1. Experimental amplitude-distance curves from AFM
imaging of an HOPG surface in tapping mode. A single-walled
carbon nanotube of lengthL ) 100 nm and diameter 5( 1 nm
was used. Curves for free air oscillation amplitudes of 14, 26, and
42 nm are shown.

U(z) ) n∫z′>z
V(r′) d3r′ (1)

Figure 2. Carbon nanotube geometry considered for the MM
simulations. The forceF exerted by the surface on the nanotube
depends on its vertical positionz. At each point of the nanotube, a
local bending angleθ is defined as shown.

U(z) ) 4επnσ3( 1
45(σz)9

- 1
6(σz)3) (2)
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and the surface, which causes a small dip in the force-
distance curve, followed by a sign reversal when the force
becomes repulsive. The repulsive interaction results in a
rapidly growing force on the nanotube, defining a region of
elastic behavior, which abruptly terminates when buckling
occurs. At that point, the magnitude of the force drops
sharply. A further decrease in the probe-surface distance
brings about a more gradual decrease in force. As expected,
the initial stiffness of the nanotube increases as the probe
tilt angle changes from 30° to 20°, resulting in buckling at
a smaller absolutez value.

The responses for nanotubes of varying diameters with a
constant length of 13.7 nm are shown in Figure 5. The curves
are generally similar for (10,10), (12,12), and (15,15)
nanotubes, showing a trend of increasing probe stiffness and
earlier buckling with increasing tube diameter. A remarkable
feature of all these curves, including those for different tilts
and diameters, is that they nearly collapse on each other after
the buckling point, underlining the similarity of the bending

force in the deformed tubes. Unlike macroscopic tubes, the
buckling deformation in nanotubes is not permanent, and the
original shape is completely restored after the load has been
removed.18,19This behavior has been verified in simulations
(not shown here) by lifting the tube from the surface.

Figure 3. Snapshots of a geometrical shape of a (10,10) nanotube
with a lengthL ) 13.7 nm and initial tilt of 30° off-normal pushed
against a flat substrate at different distances from the surface. (a)
The free end of the suspended nanotube does not contact the surface.
(b) The nanotube is elastically deformed just before buckling. (c)
The nanotube is nonlinearly deformed after buckling. (d) The final
state of the fully lowered nanotube is shown.

Figure 4. Calculated force responses for a (10,10) nanotube probe
with a lengthL ) 13.7 nm pushed against a flat HOPG surface as
a function of the probe-surface distance at three different tilt angles
of 20°, 25°, and 30°. The four arrows indicate the position of a
30° inclined nanotube corresponding to each of the snapshots of
Figure 3.

Figure 5. Calculated force responses for tubes of varying diameters
and constant length of 13.6 nm and tilt of 30° pushed against a flat
HOPG surface for (a) (10,10), (b) (12,12), and (c) (15,15)
nanotubes. Solid curves are obtained from MM simulations, dashed
curves are solutions of eq 3 for elastic bending of a cantilever rod.
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The initial elastic deformation in nanotubes may be
considered from the point of view of the continuum theory
of elasticity, by representing the tube as a continuous elastic
rod with a circular cross section. The elastic bending of a
cantilever rod with one embedded end and a forceF applied
to the other end (Figure 2) is described by20

wherel is the distance along the rod measured from the top,
θ(l) is the bending angle,E is the Young’s modulus of the
rod material, andI ) π(R2

4 - R1
4)/4 for a rod with a circular

cross section whose inner and outer radii areR1 and R2.
Equation 3 can be solved numerically21 for a rod of length
L using the boundary conditionθ(0) ) R, whereR is the tilt
angle at the upper end, and dθ/dl|l)L ) 0 at the lower end.
Young’s modulusE was determined from MM simulations
of uniform axial compression of infinite nanotubes, yielding
the values of 1055, 1052, and 1049 GPa for (10,10),
(12,12), and (15,15) nanotubes, respectively, assuming a tube
wall thickness of 3.4 Å.

The resulting solution yields values for the forceF in the
elastic approximation as a function of the change in the pro-
jection of the rod on the vertical axis. The results are super-
imposed as dashed lines on the force responses from the MM
simulations of the (10,10), (12,12), and (15,15) nanotubes,
as shown in Figure 5. The departure from the predictions of
the beam model of the elasticity theory occurs earlier than
the buckling point. Although no attempts to model the
nonlinear elastic region have been made, the coincidence in
behavior demonstrates that the elastic beam model offers a
good approximation and that nanotubes indeed behave like
macroscopic elastic bodies, at least at small deformations.

The calculated force curves may be used to predict the
amplitude response of the interaction of a nanotube AFM
probe with a surface to help interpret experimental observa-
tions. When imaging is done in tapping mode, the interaction
of a nanotube tip with a surface is modeled22 as a damped
harmonic oscillator according to

Here, z ) z(Z,t) is the instantaneous SWNT tip-surface
separation during the oscillation, which is equal to the
equilibrium valueZ at zero driving force,ω0 is the resonant
frequency of the oscillator,Q is the quality factor,m is the
effective mass of the cantilever,f0 cosωt is the external force
driving the oscillator at a frequencyω, and F(z) is the
calculated response force acting on the probe from the
surface. For the AFM system used in the current experiments,
ω0/2π ) 47.48 kHz,m ) 5.39× 10-11 kg, Q ) 150, and
the driving force was operating at resonance frequency,ω
) ω0. Using these values and the calculatedF(z), eq 4 was
solved to model oscillations of a tip with a (10,10) nanotube
probe with lengthL ) 13.6 nm and 30° tilt angle. The free
air oscillation amplitudes of 1.9, 3.5, and 5.7 nm were used

for a 13.6 nm long nanotube, obtained by scaling the
experimental amplitudes for a 100 nm nanotube with the
nanotube length. The calculated amplitudes are shown in
Figure 6 and can be compared with the experimental results
of Figure 1. As in the experiment, the calculated amplitude
goes through minima and maxima as the distance to the
surface changes. This behavior of the oscillator is not related
to any features on the surface, which is ideally smooth in
the simulations, but results from the nonlinear force on a
nanotube undergoing buckling.

In conclusion, we have used molecular mechanics simula-
tions to study the deformation dynamics of a carbon nanotube
AFM probe used in imaging an HOPG surface in tapping
mode. The initial deformation of the nanotube was found to
be elastic and to be in agreement with the continuum theory
of elasticity as applied to the bending of a cantilever rod.
As the probe was pushed further toward the surface, the force
on the nanotube increased, albeit deviating from the theory
of elasticity, until buckling occurred, coinciding with an
abrupt decrease in the force magnitude. As the nanotube was
lowered further, the force continued to decrease, although
gradually. The nonlinear force calculated was used as an
input to a macroscopic equation describing the response of
a damped harmonic oscillator, which was able to predict the
amplitude response of a nanotube AFM probe used for
imaging surfaces in tapping mode. Similarities between the
simulation prediction and the experiment suggest that the
complex amplitude response seen in the experiment may be
explained by the nonlinearity in the force exerted on the
nanotube and thus must not necessarily be related to the
structure of the surface.
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