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Abstract 
Binary alloys present a promising venue for band gap engineering and tuning of other mechanical and 
electronic properties of materials. Here we use the density-functional theory and cluster expansion to 
investigate the thermodynamic stability and electronic properties of 2D transition metal dichalcogenide 
(TMD) binary alloys. We find that mixing electron-accepting or electron-donating transition metals into 
2D TMD semiconductors leads to degenerate p- or n-doping, respectively, effectively rendering them 
metallic. We then proceed to investigate the electronic properties of semiconductor-semiconductor alloys. 
The exploration of the configurational space of the 2D molybdenum-tungsten disulfide (Mo1-xWxS2) alloy 
beyond the mean field approximation yields insights into anisotropy of the electron and hole effective 
masses in this material. The effective hole mass in the 2D Mo1-xWxS2 is nearly isotropic and is predicted 
to change almost linearly with the tungsten concentration x. In contrast, the effective electron mass shows 
significant spatial anisotropy. The values of the band gap in 2D Mo1-xWxS2 and MoSe2(1-x)S2x are found to 
be configuration-dependent, exposing the limitations of the mean field approach to band gap analysis in 
alloys.  
 
 
Introduction 

Recent advances in the synthesis of 2D transition metal dichalcogenides (TMDs) sparked new 
interest in these materials. Due to the constraint of reduced dimensionality, 2D materials have properties 
that often exceed those of their bulk counterparts,1 making them promising candidates for use in faster 
and more efficient electronic devices.2,3 Unlike semi-metallic graphene, many 2D TMDs are 
semiconductors, and thus are more suitable than graphene to be used as electronic switches. In addition, 
some interesting effects and phenomena are observed in TMDs that are not present in graphene, the most 
striking of which are superconductivity, charge density waves, and Mott insulator states.4–6 

The most recent revival of interest in 2D TMDs is connected with a new method of synthesis by 
liquid exfoliation.7 In total, there exist ~60 TMD compounds, 2/3 of which have layered structure8 and in 
principle could exist in the 2D form. The initial seminal work7 produced many new 2D TMDs, including 
MoS2, WS2, MoSe2, MoTe2, TaSe2, NbSe2, NiTe2, BN, and Bi2Te3. Since then, even more 2D TMD 
compounds have been prepared by liquid exfoliation. A recent review lists a large number of two-
dimensional transition metal dichalcogenides that have been synthesized to date.9 This variety of 
synthesized 2D TMDs holds promise for designing materials and devices with custom electronic and 
mechanical properties. By using alloys of two or more of these materials one could achieve an even 
greater flexibility and access an almost continuous range of properties. 

In this work, we explore the varying electronic properties of TMD alloys with constituent 
concentration, including the carrier effective mass and band gap. Qualitatively, the electronic properties 
of TMDs are determined by the localization behavior of the d-bands of the transition metal.8 Depending 
on the degree of localization, these materials can be insulators, semiconductors, semimetals, or metals. 
The degree of the d state mixing depends on the nature of the transition metal and its chalcogen ligand 
environment, and is expected to be influenced by their substitutions in an alloy. Here, our purpose is to 
determine the extent to which the band structure is perturbed by alloy substitutions. In particular, we look 
at whether these changes occur continuously or abruptly. 

Several 2D TMD alloys have recently been reported experimentally, including Mo1-xWxS2
10,11 

MoSe2(1-x)S2x,
12 and Nb1-xWxS2.

13 One alloy (Mo1-xWxS2) indicates substitutional disorder,10 suggesting that 



an extensive analysis of configurational space is needed. Recently, an effort to explore the configurational 
space of 2D alloys has been made by applying cluster expansion (CE) method to 2D boron pseudoalloy.14 
The role of the mixing species was played by the vacancy sites. As a result of the exhaustive structure 
search, a complete set of all thermodynamically stable phases of 2D boron has been found.14 Recent 
theoretical work on alloying of 2D TMDs included analyses based on introducing several representative 
alloy structures15 and as well as the CE approach16 that accounts for the full configurational entropy. In 
this work, we apply CE methodology to 2D TMDs, and consider regular substitutional alloys of several 
common 2D TMDs. 
 
Methods and Theory 

The cluster expansion (CE) method17 provides an effective way to sample a 2N -dimensional 
configuration space of an N -site binary alloy. Unlike mean field approximations, the CE method gives 
the full microscopic description of atomic configurations in a crystal. In the CE formalism, any function 

f  of a given configuration { }1 2, , , Nσ σ σ=σ K  of spins iσ  on N  lattice sites is fitted through a 

multivariate expansion in site occupancy variables (spins) iσ . In an alloy, the roles of spin variables are 

played by chemical identities of different atomic species. The cluster expansion of the mixing energy 

( )E σ  can be written as:17 
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where sEα  are the expansion coefficients and ( )sαΦ σ  are so-called characteristic cluster functions 

defined for all possible distinct subsets (clusters) { }, , ,p p pα ′ ′′= K  of the points of the full lattice. The 

sets { }, , ,s n n n′ ′′= K  in the sum Eq.1 include all possible non-zero indices of orthonormal polynomials 

entering the definition of cluster functions ( )sαΦ σ . Zero-index orthonormal polynomials have the value 

of 1, and therefore do not need to be included into the sum. 
In case of a two-component alloy, the cluster expansion of the mixing energy (per site) can be 

written as:18 
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Here, lattice symmetry has been taken into account by forming symmetry-adapted expansion coefficients 
for equivalent clusters. Like in the general case, α  in Eq. 2  enumerates all lattice-symmetry inequivalent 
subsets (clusters) of a full set of lattice sites, mα  is the number of clusters that are equivalent to α  by the 

lattice symmetry (divided by the total number of lattice sites N ), and coefficients Jα  are the effective 

cluster interactions (ECI). Angle brackets designate the arithmetic average over all sets of points 

{ }, , ,i q q q′ ′′= K  that are equivalent to the subset represented by α  through lattice symmetry. The 

averaging over the symmetry-equivalent clusters is possible due the independence of the effective cluster 
interactions Jα  on the spin configurations in case of a two-component system. This averaging reduces the 

number of independent ECI coefficients. The discrete site occupation variables iσ  are usually assigned 

the values of 1+  and 1−  in a binary system. 
The cluster expansion Eq.2 converges rapidly with cluster size, yielding an exact result in the 

untruncated form. In this work, the CE fitting of the mixing energy and search for the thermodynamic 
ground state was carried out with the Alloy-Theoretic Automated Toolkit (ATAT) code.18 The quality of 
the CE fit was evaluated using a cross-validation score.19 The formation energies of alloy structures 
generated by ATAT and used in the fitting procedure were computed at the density-functional theory 



(DFT) level. Total energies and band structures were obtained within the local spin density approximation 
(LSDA) with projector-augmented wave (PAW) potentials, as implemented in VASP.20 The plane-wave 
cutoff was 520 eV in all calculations, and spin-orbit coupling was neglected.  
 
 
Results 
Alloy lattice matching 
There is a general tendency for group 4–7 metal dichalcogenides to form layered structures, in contrast to 
group 8–10 metals, like pyrites, which prefer nonlayered structures.8 Here, we mostly consider layered 
group 4–7 metal dichalcogenides. Single-layer 2D TMDs can in turn form two polymorphs, having either 
octahedral (1T), or trigonal prismatic (2H) metal coordination geometries. Despite their structural 
similarity, layered TMDs display a great variety of electronic properties.  

In order to select viable candidates for binary alloys, we considered pairs of TMD compounds 
that matched a set of predefined conditions based on specific descriptors and rules. The descriptors and 
rules that were used in the selection reflected the requirements of a good match in the lattice constant and 
metal-chalcogen bond distance, as well as the band gap constraints. Mixtures of two metallic TMDs were 
not expected to display a finite band gap, and were excluded by the rules. During the alloy selection, the 
following rules were imposed:  

{ }1 2 1 2/ max , 0.034a a a a− < ,  

0 1Å.M Xd −∆ < ,         (3) 

( ) ( )1 20 0g gE E> ∨ > .  

Here, 1a  and 2a  are the lattice constants of the two TMD materials, 1 2,g gE E  are their band gaps, and 

M Xd −∆  is the difference in the metal-chalcogen bond distance. The first and second rules reflect the 

requirements that the mismatch of the lattice constants between the two materials be smaller than 3%, and 
the difference in metal-chalcogen bond distance be less than 0.1 Å, respectively, whereas the third rule 
requires that at least one of the compounds be a semiconductor. 
 

 

 
 



Figure 1. Lattice constant matching for metal-metal pairs of 2H TMDs based on the LSDA lattice constants. 
Triangles designate oxides, squares – sulfides, circles– selenides, and diamonds – tellurides. The shaded area in the 
upper left corner of the plot is populated with vanadium-molybdenum and vanadium-tungsten dichalcogenides, 
which are metal-semiconductor alloys. The shaded area in the lower left corner contains semiconductor-
semiconductor alloys of molybdenum and tungsten dichalcogenides. Bold labels and filled symbols designate 
compounds that were studied here using CE. 

 
Figure 1 shows pairs of compounds that were selected based on these rules, plotted according to 

their differences in theoretical band gaps and mismatch of the lattice constants. The data points in the 
upper left corner of Fig. 1 correspond to the largest difference in band gaps, as well as the smallest lattice 
mismatch, potentially indicating the most favorable pairs. The upper left corner of the plot is populated 
with vanadium-molybdenum and vanadium-tungsten dichalcogenides. These materials represent alloys 
between a metal (VX2) and a semiconductor (MoX2, WX2). 

We found that these types of metal-semiconductor alloys are degenerate semiconductors at all 
mixings attained in calculations. The doping mechanism was determined to be p-type, through accepting 
an electron by the electron-deficient group-5 metal. Generally, when mixing the electron-deficient V (as 
well as other group-5 metals, such as Nb, and Ta) with group-6 semiconductors such as CrX2, MoX2, or 
WX2, X=(O, S, Se, Te), the decrease in the number of electrons leads to metallic behavior and the shift of 
the Fermi level into the valence band. The degenerate p-doping behavior was observed in all of the 
aforementioned compounds studied at four different concentrations, and also in V1-xMoxTe2, V1-xMoxS2, 
and V1-xMoxSe2, which were studied in more detail at various concentrations and configurations with CE. 
From the CE calculations, V1-xMoxTe2 was found to be nominally energetically stable, whereas V1-xMoxS2 
and V1-xMoxSe2 were determined energetically unstable, although mixing energies were rather small in all 
cases. 

 
 

Figure 2. Mixing energies per MX2 structural unit of the V1-xMoxTe2 alloy in the 2H phase. Large blue (dark) stars 
represent the values obtained from DFT calculations, and small green (light) triangles represent the values from the 
CE fitting. The solid line is the convex hull of the alloy thermodynamic ground state. The inset shows the largest 
supercell that was used in CE calculations as well as the unit cell of the 2H trigonal prismatic phase. 

 
 The results of the CE calculation for the V1-xMoxTe2 alloy in the 2H phase are shown in Fig. 2. 
The mixing energies are slightly negative, with absolute values on the order of 10-20 meV per MX2 unit. 
These low values indicate that facile mixing should be possible at all concentrations. The positive mixing 
energies of V1-xMoxS2 and V1-xMoxSe2 are on the order of 10-20 meV per MX2 unit. We also note that our 
CE approach uses the total energies of the DFT ground states, thus assessing the stability of these 
structures in the thermodynamic limit and at zero temperature. In cases of the low mixing energies, such 
as ones encountered here, the entropy contribution to the total free energy may be comparable to or even 
greater than the relative energy of mixing at the typical temperatures ~1000K used in the growth of these 



structures. In the future, electronic excited states and phonon contributions may be taken into 
consideration to account for finite temperature effects in these materials. 

The doping mechanism responsible for the metallic behavior in these alloys is illustrated in Fig. 3. 
Spin-polarized density of states (DOS) of the V1-xMoxTe2 alloy is shown at four different concentrations. 
As the concentration of V increases, the Fermi level moves deeper into the valence band. In terms of the 
conventional picture of the semiconductor doping, this shift corresponds to heavy doping of MoTe2 with 
V impurities, resulting in a Mott semiconductor-metal transition. Similarly, the shift of the Fermi level 
into the conduction band may occur by heavy n-doping. For instance, our calculations show that 
increasing the number of electrons by mixing electron-donating Fe into a hypothetical 2H CrX2 
compound leads to metallicity by this mechanism. The 2H CrSe2 is predicted to be a semiconductor with 
a small LDA band gap. After addition of 25% iron, the electronic DOS remains nearly unchanged, 
whereas the Fermi level is moved by ~0.3 eV into the conduction band. Similarly, in MoS2 doped with 
25% iron, the Fermi level resides ~0.5 eV above the edge of the conduction band (these mechanisms are 
complementary to the mechanically-induced semiconductor-metal transition that was proposed recently 
for the bilayer TMDs21). 
 

 
Figure 3. Spin-projected density of states showing the shifting of the Fermi level into the valence band of a metal-
semiconductor alloy. The DOS of 2H VxMo1-xTe2 alloy, at V concentration of 0% (a), 33% (b), 80% (c) and 100% 
(d) are shown. Atom configurations in (a), (c), and (d) correspond to the lowest energy thermodynamic states as 
predicted by the CE, whereas the structure at (b) is above the lowest thermodynamic state. The zero of the energy 
corresponds to the Fermi level. 
 
Semiconductor-semiconductor alloys 
Unlike alloys between metals and semiconductors, semiconductor-semiconductor alloys have finite band 
gaps at all concentrations. This property ensures a priori that the alloy is a semiconductor, but may be 
deemed as a disadvantage due to inability to decrease the alloy band gap below a certain fixed value. This 
latter possibility may be vital for applications where low energy electronic excitations are important, such 
as in infrared sensors. The range of possible variations of the band gap is also generally more limited than 
in case of a metal-semiconductor alloy.  
 

In Fig. 1, a group of Mo-W dichalcogenide semiconductor-semiconductor alloys is located at the 
bottom left corner of the plot, indicating good lattice matching and moderate band gap variation with 
concentration. In this group, we focus on the properties of the Mo1-xWxS2 alloy – a compound consisting 
of two of the most studied 2D TMDs. Both MoS2 and WS2 single-layer materials have been extensively 
characterized before. Several recent experimental10,22 and theoretical15,16 studies of their alloys exist. The 
latter employ analyses based on several representative structures,15 as well as more detailed approaches 
including full configurational entropy.16 Mixing energies and the convex hull of alloy ground states of 
Mo1-xWxS2 are shown in Fig. 4. The alloy is found to be stable, with mixing energies on the order of -5 
meV/MX2 unit. Three distinct regions of concentrations can be delineated, viz. (1) 0<x≲0.33, (2) 
0.33≲x≲0.60, and (3) 0.60≲x<1. In the first region, the mixing energy decreases linearly with tungsten 
concentration. In the second region, the energy is almost independent from the concentration, whereas in 



the third region the energy varies linearly again. According to the standard interpretation of the binary 
alloy phase diagram, the first and third regions correspond to domains of complete miscibility between 
the two components, whereas the second region is the polymorphic domain. Earlier, polymorphism was 
theoretically predicted in 2D boron,14 implying that it would lead to a greater degree of disorder during 
synthesis. Here, polymorphism is displayed in the range of W concentrations 0.33≲x≲0.60, and disorder 
is also more likely to exist in that range. 

Both 2D MoS2 and WS2 constituents are direct-gap semiconductors,23 with their valence band 
maximum (VBM) and conduction band minimum (CBM) located at the K point of the Brillouin zone. 
This suggests that their binary alloy may have a direct band gap at the same location. Our calculations 
confirm this assumption, finding a direct gap at the K point of the folded Brillouin zone in all mixed 
compounds. 

 
Figure 4. Mixing energies per MX2 structural unit of the Mo1-xWxS2 alloy in the 2H phase. Large blue (dark) stars 
represent the values obtained from DFT calculations, and small green (light) triangles represent the values from the 
CE fitting. The solid line is the convex hull of the alloy thermodynamic ground state. 

 
We proceed with the calculation of the effective carrier mass in the Mo1-xWxS2 alloy at the K 

point as a function of the alloy structure and composition. The tensor of the reciprocal effective carrier 

mass near the band edge for the energy dispersion law ( )ε ε= k  is given by:24 
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The tensors of reciprocal effective masses ( )1

ij
m∗ −  for holes and electrons were calculated from the 

parabolic fitting of ( )ε k  near the VBM and CBM, respectively. Figure 5a shows the calculated effective 

hole masses in the Mo1-xWxS2 alloy as a function of W concentration x, obtained by diagonalizing the 

reciprocal effective mass tensor ( )1

ij
m∗ − . In some structures, the energies at the band edge are degenerate, 

giving rise to two types of carriers. In Fig. 5a, masses for the heavy and light holes in the principal axes 
are shown with open symbols, whereas nondegenerate cases are shown with filled symbols. One observes 
that the effective hole masses in the Mo1-xWxS2 alloy vary almost linearly with x in nondegenerate cases. 
There is also little spatial anisotropy. In case of degenerate values, deviations from the linear trend are 
larger, while their spatial anisotropy is still quite small. 
 Unlike the effective hole masses, the effective electron masses in the Mo1-xWxS2 alloys shows 
great directional anisotropy, as shown in Fig. 5b. As before, the values for heavy and light carriers are 
plotted with open symbols, whereas nondegenerate values are plotted with filled symbols. In some 
structures, the effective mass anisotropy reaches values as high as 2. Large increase of the effective mass 



is observed in the [112̄  0] direction, while in the [1̄ 100] direction the linear trend is followed more closely. 
These disparities are testable and should be reflected as a marked difference in the behavior of two carrier 
types in alloys prepared under typical experimental conditions. Since currently there is no precise control 
over exact placement of atoms in an alloy, measurements of effective masses of electrons in Mo1-xWxS2 
should yield values that vary from one sample to another, even at the same mixing ratio. These variations 
should be interpreted by experimentalists as an intrinsic property of the system caused by the strong 
dependence of the effective mass on microscopic atomic configuration, and not a consequence of, e.g. 
faulty equipment or inadequate sample quality. On the other hand, effective hole masses should follow a 
linear trend very closely with concentration, displaying a narrow distribution around an average value at 
every concentration.  

The stark contrast in the effective mass anisotropy of the two carrier types is most likely related 
to orbital symmetry. Site orbital projections reveal that both the VBM and CBM Kohn-Sham 
wavefunctions are formed from the d orbitals of transition metal atom. However, the symmetries of these 
d orbitals are different. The top of the valence band wavefunction has 2 2xy x y

d d
−

+  character, whereas the 

wavefunction at the bottom of the conduction band has 2z
d  character. This assignment coincides with the 

splitting pattern predicted by the crystal field theory25 for the perturbing field with trigonal prismatic 
symmetry. It follows that a band at the CBM that is formed from a single 2z

d   orbital is more sensitive to 

the scattering by substituted atoms than the band at the VBM. 
 

 
 
Figure 5. Calculated LDA effective masses of holes (a) and electrons (b) in the Mo1-xWxS2 alloy as a function of W 
concentration x. Principal axes values for the heavy and light carriers in degenerate bands are shown with open 
symbols, whereas nondegenerate values are shown with filled symbols. Note the difference in scale in (a) and (b). 
Orbital drawings show the symmetry character of the Kohn-Sham states at the edges of corresponding bands. 

 
We next examine band gap variations as a function of x in Mo1-xWxS2, as well as another similar 

semiconductor-semiconductor compound, MoSe2(1-x)S2x. Cluster expansion of the formation energy of 
MoSe2(1-x)S2x (not shown) predicts it to be a thermodynamically stable compound, with mixing energies 
on the order of -8 meV per structural MX2 unit. Figure 6 shows the calculated band gaps for these two 
compounds at various concentrations, as determined for structures used in CE calculations. The band gaps 
in the thermodynamic ground states are shown with larger symbols. The LDA gap varies from 1.87 to 2.0 
eV in Mo1-xWxS2 with concentration. These values are surprisingly close to the experimentally reported 
variation11 from 1.85 to 1.99 eV in this alloy. Such a good agreement is probably coincidental and a result 
of the mutual cancellation of various many-body corrections and the effect of spin-orbit coupling (SOC) 
on the optical band gap. In MoSe2(1-x)S2x, the calculated band gap varies from 1.62 to 1.86 eV. Again, 



these values compare very favorably with the experimentally measured variations between 1.55 and 1.87 
eV.12 The general trend of gradual band gap change between these two limiting values is clearly visible. 
However, in Mo1-xWxS2, the gap stays nearly constant up to a W concentration of 0.5 and starts increasing 
afterwards, whereas in MoSe2(1-x)S2x the gap variation is more uniform and nearly linear throughout the 
whole range of S concentrations. Overall, from the point of view of phenomenological description of 
semiconductor alloys, the band gaps in these compounds show slight bowing with a positive bowing 
parameter. In addition, band gaps should display configuration-dependent variations that can be observed 
in optical absorption or emission experiments. These variations should be interpreted as an intrinsic 
property of these alloys. The determined trends of band gap variations help set the important limits on 
their possible values and may be instrumental in the future design of 2D alloy-based devices. 

 
Figure 6. LDA band gaps in Mo1-xWxS2 (downward triangles, red) and MoSe2(1-x)S2x (upward triangles, blue) alloys 
as a function of concentration x. The band gaps in the thermodynamic ground states are shown with larger symbols. 
Conclusions 
We studied the thermodynamic stability and electronic properties of 2D transition metal dichalcogenide 
alloys using density-functional theory and cluster expansion formalism. Metal-semiconductor and 
semiconductor-semiconductor alloys were considered. Metal-semiconductor alloys were found to be 
always metallic, the doping mechanism being either through the degenerate electron or through hole 
doping by the metallic component. Among semiconductor-semiconductor alloys, we examined effective 
carrier masses in the thermodynamically stable Mo1-xWxS2. In this compound, we found that the spatial 
anisotropy for holes is at most 4% at all concentrations, whereas for electrons the ratio of effective masses 
along the principal axes reached values as high as 2 in some structures. In this and another stable 
semiconductor-semiconductor 2D alloy, MoSe2(1-x)S2x, we calculated LDA band gaps as a function of 
concentration and found almost linear variation with slight bowing.  
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