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ABSTRACT: With the lateral coplanar heterojunctions of two-dimensional monolayer materials turning into reality, the
quantitative understanding of their electronic, electrostatic, doping, and scaling properties becomes imperative. In contrast to
traditional bulk 3D junctions where carrier equilibrium is reached through local charge redistribution, a highly nonlocalized
charge transfer (trailing off as 1/x away from the interface) is present in lateral 2D junctions, increasing the junction size
considerably. The depletion width scales as p−1, while the differential capacitance varies very little with the doping level p. The
properties of lateral 2D junctions are further quantified through numerical analysis of realistic materials, with graphene, MoS2,
and their hybrid serving as examples. Careful analysis of the built-in potential profile shows strong reduction of Fermi level
pinning, suggesting better control of the barrier in 2D metal−semiconductor junctions.
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Two-dimensional materials have emerged as next key
building blocks for nanotechnology, holding great

promise for nanoelectronics. In order to exploit their
remarkable properties in actual devices, 2D materials need to
be interfaced with other systems, i.e., connected to electrodes
or with each other. In this respect, 2D material heterojunctions
are of great interest. While vertical heterostructures and
junctions of graphene and other 2D materials have traditionally
attracted most attention,1,2 recent experimental successes3−8

have put a spotlight on lateral, coplanar 2D junctions. For
instance, a nearly perfect lateral graphene|h-BN junction has
been recently made,3 and lateral junctions between two
different 2D transition metal dichalcogenides have been
realized.4,5 Electrically doped lateral graphene p−n junction
made from a single graphene sheet utilizing the ambipolar field
effect9 has also been reported.10 While ever-expanding
availability and improving sample quality make experimental
tests feasible, it also compels one to theoretically investigate
properties of such lateral junctions in general and of specific
heterostructures formed from typical 2D materials.
A tight contact of two materials in a heterojunction allows an

exchange of carriers which equilibrates the Fermi levels, while
also realigns the electronic bands. In a 3D junction the formed
electric double layer is rather local but planar, making it

sufficient to create a global built-in potential step Δϕ, so that
ΔEF − Δϕ = 0, where ΔEF is the difference of the Fermi levels
of the materials before contact (hereafter we use elementary
charge e as a unit, so the energy and electrostatic potential have
same dimensionality). The electric double layer consists of the
highly localized dipoles, due to often-present interface states,
and the region of width W fully depleted of carriers; there is
also a transition region11 between the space-charged depletion
region and the neutral material away from the junction. In the
3D case the transition region is very narrow, which justifies the
well-known abrupt depletion-layer approximation.11,12 In 2D
lateral junction, the charge exchange forms a double layer which
is not a plane, but merely a dipole line, whose electrostatic
potential obviously decays with distance as ∼x−1 and cannot
build the global potential step Δϕ needed for carrier
equilibration.13 It means immediately that any interface
chemical dipoles cannot cause 2D-junction band offset14,15

and the Fermi level pinning16 is suppressed. Less obvious,
delocalized charge redistribution is necessary13 to form a global
potential step Δϕ equilibrating the Fermi level across the 2D
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junction. Below we begin from the simplest heterojunction
model of two metals with different work functions. It permits
an analytical solution, clearly reveals the general trends in
charge and potential behavior across the lateral 2D junctions,
and determines the key differences from the bulk case. We then
go on to explore in some detail selected 2D junctions of
realistic materials (gapless semimetal graphene, semiconductor
MoS2, and their hybrid structure) using the semiclassical
macroscopic model with its material-specific parameters drawn
from the electronic structure density functional theory (DFT)
calculations. In case of hybrid structure (e.g., Gr|MoS2), the
role of interface states and limitations of the Fermi level
pinning in Schottky barrier behavior are discussed.
The important distinction between 3D and 2D junctions can

be captured by the analysis of lateral heterojunction of two
semi-infinite metal sheets; see Figure 1a. If the difference of the

metal Fermi levels is ΔEF = Δϕ, the 2D Poisson equation for
the potential distribution ϕ(x,y) is

ϕ πσ δ∇ = −x y x y( , ) 4 ( ) ( )2
(1)

with the boundary conditions ϕ(x = ±∞, y = 0) = ±Δϕ/2.
Here x is the in-plane direction normal to the interface line z, y
is the out-of-plane direction, and σ(x) is the surface charge
density, multiplied by δ(y) for a thin junction layer.
Translational symmetry is assumed along z. We find that eq
1 is analytically tractable, with elegantly simple solution ϕ(x,y)
= Δϕ/π tan−1(x/y). The in-plane surface charge density σ(x) is
therefore given by

σ π ϕ ϕ π= − ∂ ∂ = Δ
=

x y x( ) (1/ ) / 1/2( / )(1/ )
y 0

2

(2)

The charge density is proportional to the Fermi level difference
ΔEF = Δϕ, and its singularity at the origin would be truncated
by the carrier concentration in a real metal. Truncation of the
singular dipole has only very localized effects and leads to
interface region of small width W (see Supporting Informa-
tion). The extensive tail σ ∼ 1/x is however a common feature
of all lateral 2D heterojunctions. The necessity of the long
charge tail in 2D junctions and even its functional form can be
understood by estimating the integral of the electric field, E(x)
= 2πσ(x) at the surface y = 0 and then of nearly constant value
over an arch-path connecting two remote points ±x. The path
length is πx, so that 2π2σ(x)·x = Δϕ, which yields precisely eq
2. Note the diverging integral ∫ W

∞σ(x) dx where W > 0,
indicating the extensive charge transfer in a 2D junction, limited
in reality by the device size L at the upper limit.
We also note that eq 2 contains no length scale at all to

characterize the width of the junction, unless a finite carrier
density is introduced. The latter becomes essential when
turning to p−n junction with carrier density limited by the
dopant (areal) concentration c = p/a2, p being probability of a
dopant per unit cell of area a2. Accordingly the maximum
carrier charge density is limited by σ(x) ≤ ec. Combined with
eq 2, one finds the width of depletion region as

ϕ π ϕ= Δ ∼ ΔW c p1/2( / ) /2
2

(3)

Note that its scaling with the built-in potential and the dopant
concentration is qualitatively different from that in a 3D
junction, whereW3 ∼ (Δϕ/p)1/2.11 Yet more striking difference
is in the extensive transition region σ(x) ∼ 1/x, generally
negligible in 3D junctions. Now that significant new features of
2D junction are captured, we go on to explore how it will be
affected by specific material details in case of p−n junction in
real semiconductor (e.g., MoS2) or semimetal (graphene, Gr)
or possibly their heterojunction (Gr|MoS2).
For materials with a moderate carrier density (semi-

conductor, semimetal), eq 1 is no longer sufficient to obtain
the potential and charge density, requiring a more material-
specific account. Using full atomistic description such as the
DFT is impractical:17 as the above eqs 2−3 suggest and is
shown below, depletion regions span very long range in 2D
junctions, from 10 to 104 nm which is orders of magnitude
greater than in 3D; the standard plane wave basis used for
extended systems imposes periodicity in all directions, requiring
a supercell of at least 102 ∼ 108 nm3 size (see Supporting
Information). Instead, we employ a more manageable semi-
classical approach12 by considering the following expression for
the charge distribution σ(x):

∫σ σ ϕ= + − ′+
−∞

Φ
x ec C( ) d

x

q

( )

(4)

Here, the local charge density σ(x) is obtained by adding the
constant positive background from the host material (σ+) and
dopant ion concentration (c = p/a2). The important variable
third term represents the electrons stored by the layer intrinsic
(quantum) capacitance Cq charged up to the local voltage ϕ(x)
≡ ϕ(x, y = 0). This quantum capacitance is directly related to
the density of states available to the electrons, D(ε) or
DOS:18,19 Cq = ∂σ/∂ϕ = ∫D(ε)(−∂f(ε − ϕ)/∂ε) dε, where
f(ε) is the Fermi function. This expression relies on a rigid band
approximation (RBA) for the DOS, i.e., D(ε) independent of
the local external potential ϕ(x) and charge σ(x). To obtain the
potential and charge distributions, eqs 1 and 4 are solved self-

Figure 1. Schematics of a lateral coplanar 2D heterojunction (a) and
(b−d) of band alignments in the contacts of two metals (b) and
semiconductor (c) or graphene (d) p−n junctions. EF is the
equilibrated Fermi level, and ϕ(x) is the built-in potential within the
plane of the materials. Full band structures of a 2D semiconductor
(MoS2) and graphene, with doping levels of −0.1 (red dashed), 0.0
(black solid), and +0.1 (blue dashed) e/cell are shown on the left.
Horizontal lines show positions of the Fermi level for each doping
degree.
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consistently.20 By choosing the appropriate harmonic basis for
the 2D Poisson equation, we are able to consider an infinite box
length in the y direction, which is essential to capture the long-
ranged features in a 2D junction. The use of RBA for the DOS
is justified, as is clear from Figure 1c−d, which show full band
structures of MoS2 and graphene charged to p = −0.1 (red), 0.0
(black), and +0.1 (blue). The band structures change very
slightly with charging, showing almost rigid bands under doping
of ±0.1. Actual typical dopant levels are much smaller, from
10−6 to 10−3, where the RBA is valid a fortiori.
With these provisions we are ready to analyze two

representative p−n junctions in monolayer semiconductors
(MoS2, Figure 1b) and semimetals (graphene, Figure 1c). Both
junctions are assumed abrupt and having no interface states.
For the p−n junction of MoS2, the DOS near the band edges
derives from the doubly degenerate parabolic bands originating
from the K and K′ valleys, with respective hole and electron
masses of mh = 0.58 m and me = 0.48 m,21,22 m being the
nominal electron mass; an experimental band gap of 1.85 eV23

was assumed. The p- and n-dopant ion concentration of p =
10−4 was used symmetrically for MoS2, which results in a built-
in potential of Δϕ = 1.60 V. To contrast the dimension-related
behaviors more clearly, we also consider an equivalent
hypothetical 3D semiconductor p−n junction with identical
effective masses, band degeneracy, dopant concentration, and
natural layer-spacing in the y-direction. Other choices for the
parameters of 3D materials are possible; however, they do not
alter the results significantly.
For the DOS of graphene near the Dirac point, a linear

dispersion D(E) = (2/πℏ2vF
2)|E| was used,24 with vF = 106 m/s

Fermi velocity. A dopant ion concentration p = 1.5 × 10−4 was
applied symmetrically, resulting in a built-in potential of Δϕ =
0.093 V. The corresponding 3D p−n junction had graphene
DOS, and the natural interlayer spacing in y-direction is
assumed. A temperature T = 300 K was used for the Fermi
function in all calculations. The Fermi level of all materials is
assumed to be controlled by the dopant type and amount, given
by the dopant concentration p.
The calculated charge densities and electrostatic potentials

are shown in Figure 2. Red solid curves plot solutions for 2D
materials (MoS2, graphene); red dashed curves are the
asymptotic forms given by eq 2, and blue solid curves
correspond to the 3D junctions.
The charge distribution in a coplanar MoS2|MoS2 p−n

junction is shown in the top panel of Figure 2a with a solid red
line. The fully depleted area with constant charge near the
contact transitions into a long charge tail extending into the
material, approaching the asymptote ∼1/x (dashed red line) as
predicted by eq 2. The depletion widthW, defined as a distance
to the intersection of the full depletion level and perfect metal
solution, is ∼48 nm for this case. In contrast, the charge
distribution in the corresponding 3D junction (solid blue line)
drops rather abruptly at ∼5 nm, without long tail. The potential
profile in a MoS2|MoS2 p−n junction, shown in the bottom
panel of Figure 2a with a solid red line, reaches the asymptotic
value over the length of more than 60 nm. The potential varies
rather slowly, change of Δϕ/2 = 0.8 V over 192 unit cells of
MoS2 amounts to 4 meV per unit cell. This contrasts with the
potential in the bulk junction (solid blue line) reaching the
asymptotic value at just ∼4 nm.
The fully depleted region is absent in gapless graphene, and

the charge density in Figure 2b decreases gradually,
approaching ∼1/x behavior at ∼10 nm. We define the width

of graphene junction as W where σ(W) = 0.1p/a2, which yields
W = 12 nm. In contrast, the charge density for the
corresponding 3D junction (solid blue line) drops rather
quickly within 2 nm, without a long tail. The potential profile
for Gr|Gr p−n junction (solid red line in the bottom of Figure
2b) approaches the asymptotic value at ∼10 nm. This
corresponds to the Δϕ gradient of 1.1 meV per unit cell,
small enough to justify using ϕ as a parameter in the RBA for
this system. It is clear from Figure 2 that in both examples of
MoS2 and Gr the depletion widths of 2D junctions are much
greater than those of 3D analogues. More importantly, an
extensive charge transfer with a 1/x charge tail is present in 2D
junctions, while in 3D the charge transfer is localized and drops
rapidly to zero over a small distance.
These qualitative differences between the 2D and 3D

junctions would be reflected in their response to the applied
voltage. According to eq 3, the depletion widths scale as
different powers of the built-in potential, W ∼ Δϕ1/(d−1) with d
= 2 or 3, for the 2D or 3D cases. When the forward bias V is
applied, the potential step becomes Δϕ − V, allowing one to
determine how the depletion width W depends on the bias
voltage, using eq 3. The depletion width can be measured
indirectly through differential capacitance of the junction. For
traditional 3D junctions the differential capacitance is given by
C3D ∼ p1/2(Δϕ − V)−1/2 ∼ W3

−1.11 The capacitance of a 2D
junction has a different form. For a 2D junction of finite total
length L with the total charge Q (per transverse length) the
capacitance C2D = dQ/dV can be calculated using eqs 2−3 as
C2D = (1/2π2) ln(L/W2). This yields an exponential relation,
W2 = L exp(−2π2C2D), between the depletion width of a 2D
junction and its measured capacitance. Figure 3 shows the
computed W2 for both junctions as a function of doping level p.
The computed widths are plotted with red circles (for MoS2)
and red crosses (for Gr), with the corresponding predictions of
eq 3 shown as thin lines. For a semiconductor like MoS2, the
built-in potential Δϕ is mainly determined by the band gap,
with only small change due to doping, i.e., Δϕ ≈ const and,
according to eq 3, the depletion width changes as ∼ p−1, in
close agreement with the computed data in Figure 3. In
graphene, where DOS is decreasing near the Dirac point, the
built-in potential depends strongly on the dopant concen-

Figure 2. Computed electrostatic potential and surface charge density
in 2D lateral MoS2|MoS2 and graphene|graphene p−n junctions; only
the n-doped side is shown. (a) Surface charge density (top) and
electrostatic potential (bottom) for symmetrically doped 2D (solid red
lines) and 3D bulk (solid blue lines) MoS2 p−n junctions with doping
p = 10−4. The asymptotic behavior of eq 2 is shown with a red dashed
line; the depletion width W = 48 nm is marked. (b) Surface charge
density (top) and electrostatic potential (bottom) for symmetrically
doped lateral 2D and 3D bulk graphene p−n junctions with p = 1.5 ×
10−4; width W = 12 nm of graphene junction is marked.
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tration. The relation between the built-in potential and doping
can be expressed as p = ∫ 0

Δϕ/2 D(E) dE = (1/πℏ2vF
2)Δϕ2 if

temperature is ignored, which gives Δϕ ∼ p1/2. Substituting
into eq 3, we have W2

graphene ∼ Δϕ/p ∼ p−1/2, which is also in
close agreement with computed values in Figure 3 for high
doping (p > 10−4). For low doping, the built-in potential Δϕ
for graphene becomes comparable to the thermal energy kBT =
26 meV. In this region the carriers are created predominantly
by thermal excitations, and the W reaches a plateau at p < 10−4.
The difference in scaling with junction dimensionality is

further illustrated by plotting the depletion width of eq 3 for a
2D MoS2|MoS2 p−n junction, at p = 10−7, 10−5, and 10−3 (solid
red lines, Figure 3 inset). Depletion widths of the 3D p−n
junctions are plotted as blue dashed lines. The standard formula
W3 = [(Δϕ − V)/(2π2c)]1/2 for the bulk junction is used,11 also
at p = 10−7, 10−5, and 10−3. Due to the difference in scaling
laws, the slopes and vertical spacing for the 2D results are twice
as those of the 3D, and the depletion widths of 2D junctions
greatly exceed those of 3D. If we consider a typical case where
Δϕ − V = 1 V, it is seen from the figure that a doping level of p
∼ 10−3 is needed to enter the 100 nm scale, and a value of p
higher than 10−3 is required to enter the nanometer scale. This
indicates that, in nanometer scale device applications, one
should expect a fully depleted lateral 2D junction for any typical
p values. Only when the semiconductor is doped as strongly as
p > 10−3 should one expectW < L. With embedding medium of
dielectric constant ε > 1, the length scale is expected to be even
larger.
Finally, we turn to a heterojunction, where chemical

disruption brings about the interfacial states, causing Fermi
level pinning that notoriously affects the Schottky barrier in
bulk metal−semiconductor devices.25 How and if these effects
are different in coplanar geometry can be explored within the
same approach by accounting for the interfacial states, also
participating in the charge equilibration process. The interfacial
dipole in a 3D junction is planar and creates a global potential
step throughout the junction, leading to the deviation from the
Schottky−Mott rule for the barrier (and band alignment) of
metal−semiconductor junctions.14−16 If the density of inter-
facial states is very large, the barrier height is dominated by the

interface and decouples from the metal work function, leading
to possibly full Fermi level pinning.26 In contrast, in 2D
junction the interfacial dipole is linear and can only create local
potential variation, vanishing at a distance; since interface states
charging cannot affect band offset remotely, it may seem at a
first glance that pinning is not possible at all.
In order to quantify the situation, we include an interfacial

term into eq 4. The essential role of the interfacial states can be
captured by their constant DOS, Di = n/Eg uniformly
distributed within the band gap Eg of the semiconductor,26

where n is the linear density of interfacial states at the contact.
The resulting charge density σi accumulated at the interface is σi
= Di(Eneu − ϕ(0) − EF)·δ(x). Here, Eneu is the neutrality
level,16 and multiplication by δ(x) denotes a thin region at the
interface. This term should be added into eq 4, solved self-
consistently with eq 1 to obtain the potential and charge profile
across the 2D Schottky junction. The solution naturally
produces a countercharge on the metal side, resulting into an
interfacial dipole. Here we select as example heterojunction of
Gr|MoS2,

27 where MoS2 has electron affinity χ and is n-doped
to p = 10−4. Due to lattice mismatch, such interface must be of
bad quality, containing strained and dangling bonds, which
justifies considering broad range of interface state densities up
to high values of n in our phenomenological model. To mimic
the change of metal work function due to contact with different
metals, we vary the work function ϕw of graphene and compute
the resulting Schottky barrier height ϕB. The results are shown
in Figure 4 for n = 0, 10−3, and 10−2. The ideal case of the

Schottky−Mott rule and the fully pinned limit are shown as
thin lines. Although the slopes vary not far from unity, it is clear
that the interface dipole does have local effect, sufficient to
reduce the barrier and cause some degree of Fermi level
pinning (in contrast to band offset which cannot be pinned at
all by a localized linear dipole potential; see also Supporting
Information). The inset in Figure 4 shows the pinning strength
S ≡ 1 − ∂ϕB/∂ϕw as a function of the density of interfacial
states n. Note that the pinning strength never reaches the fully
pinned limit S = 1, instead remaining near one-half even at very
high interfacial state concentrations, in accord with qualitative
assessment above.

Figure 3. Depletion width W in MoS2|MoS2 and Gr|Gr p−n junctions.
Red circles show computed widths W2 of lateral 2D MoS2 junctions,
and the red solid line is from eq 3; blue dashed line shows the
depletion widthW3 of a corresponding 3D semiconductor. Red crosses
and the tracking red line show similar results for graphene. The inset
compares the depletion widths of 2D (red lines) and 3D (blue dashed
lines) semiconductors as functions of the total built-in potential Δϕ −
V; depletion widths W2 for 2D (red lines) and the widths W3 for the
3D analogue (blue dashed lines) are shown for p = 10−7, 10−5, and
10−3.

Figure 4. Computed Schottky barrier height ϕB as a function of ϕw −
χ, the difference between the metal workfunction and electron affinity
of the semiconductor. Red dashes, solid black dots, and empty purple
circles are results for densities of interfacial states n = 0, 10−3, and 10−2,
respectively. Black straight lines show the fully pinned and Schottky−
Mott limits. Inset shows the calculated pinning strength 1 − ∂ϕB/∂ϕw
as a function of the interfacial states density n.
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In summary, we studied the charge equilibration processes in
2D lateral heterojunctions. The calculations predict an
extensive charge transfer across the interface, due to the
reduced electronic screening in 2D systems. A universal trait of
∼1/x for the charge density decreasing slowly away from the
interface, and scaling rule for the depletion region width W ∼
Δϕ/p (with the built-in potential Δϕ and doping level p) are
established. In particular, instead of a very narrow transition
region between the depleted and neutral zones in the 3D case,
here the transition region dominates and may span the entire
device. We thus find that the 2D Schottky devices may have a
much greater length scale compared to bulk junctions or can be
otherwise fully depleted and tuned by the size itself. The
extensive depletion region should reduce leakage current and
thus improve the device on/off ratio. The electric field across
large area of space charge may assist charge separation in
photovoltaic applications, provided the electron−hole attrac-
tion is weak, so that reduced field strength is not too
detrimental. Finally, the well-known issue of Fermi level
pinning in a Schottky junction appears less significant in 2D
systems, allowing a much better control of the Schottky barrier
height with respect to the change of the metal work function.
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