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Abstract

Calculations of blocking cone sizes for the “blocking geometry’ of the scattering and recoiling imaging spectrometry
(SARIS) technique have been performed. By fitting calculated points in the space of the parameters of the interacting
atomic species, a universal formula for calculating the blocking cone size for arbitrary energies and interacting species
has been derived. This provides a “blocking cross-section’ and an estimate of the total scattering cross-section of the
process under consideration. The results obtained from the formula are compared with experimental SARIS blocking
cone data for He* and Ne™ scattering from a Pt(1 1 1) surface in the energy range 3-20 keV. The blocking cones in this
low-energy range are appreciably asymmetric with respect to the interatomic axis. At small interatomic distances and
low-projectile energies, the difference in angular size of the upper and lower halves of the blocking cone can be as large
as 15%. The results of scattering and recoiling imaging code simulations and molecular dynamics blocking cone tra-
jectory simulations using the Ziegler-Biersack-Littmark potential are in good agreement with experimental blocking
cone sizes. Comparison is also made to the results of other formulas for the critical blocking angle found in the lit-
erature. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction cal LEIS interactions with solids involve only 1-3

collisions, compared to many collisions in medium-

The effects of shadowing and blocking in me-
dium- and high-energy ion scattering and in
channeling of energetic ions in solids have been
extensively studied. The origin of the shadowing
and blocking concepts as related to low-energy ion
scattering (LEIS) can be traced back to these
studies, however they are different due to the much
shorter penetration range of the particles [1]. Typi-
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and high-energy ion scattering. As a result, LEIS is
sensitive to only the top few atomic layers of a solid
and the shadowing and blocking phenomena can
be used for studying the composition and structure
of these top few monolayers.

A number of model investigations using shad-
owing/blocking cone shapes for interpretation of
experimental ion scattering data have been per-
formed [2-16]. Shadowing and channeling have
been thoroughly studied since they play a major
role in nearly all high-energy scattering experi-
ments. Blocking effects are frequently studied
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together with channeling, and many authors used
these terms interchangeably. On the other hand, in
many LEIS experiments, a short range blocking
phenomenon is manifested that is not accompa-
nied with channeling or shadowing as in high-
energy experiments. It involves only one large
angle scattering and subsequent small-angle de-
flection by a blocking atom. This important phe-
nomenon in the analysis of surface structure based
on ‘“pure” blocking effects has not drawn much
attention.

Most of the earlier calculations of shadowing/
blocking/channeling effects [2,4,5,17,18] used semi-
analytical techniques, employing an impulse ap-
proximation and/or a small-angle approximation
due to limits imposed by computing powers of the
times. An analytical expression for the shadow
cone radius using an inverse-power potential in
those approximations was obtained by Lindhard
[17]. The fitting expression for the case of a more
realistic screened Coulomb potential has been
given by Oen [2]. It was shown by comparison to
exact calculations [3] that the universal expression
for the shadow cone radius obtained by Oen [2] is
very good in the range of interatomic distances
> 2 A encountered in LEIS. In another series of

works, the cross-sections for shadowing and
blocking arising from a two-atom target using a
backscattering geometry were generalized for ar-
bitrary scattering angles [6] and the specific case of
rainbow backscattering was studied [7]. Similar
cross-section considerations were implemented to
calculate intensities of direct recoils [8].

In contrast to these shadow cone calculations,
no universal expression for blocking cones has
been obtained. Also, there has been no direct ex-
perimental observation and quantitative inter-
pretation of blocking cones in LEIS. Different
approximations for calculation of the blocking
cone size for higher energies are listed in Table 1.
The observation of blocking cones in rainbow
scattering at the minimum ejection angle [19] was
quantified by Oen [18] using a two-atom model
and, based on that description, an explicit analytic
expression for the minimum exit angle in case of
the inverse power interaction potential was ob-
tained [4,5]. These calculations of the minimum
ejection angle [4,5] used the small-angle approxi-
mation and assumed a monoenergetic isotropic
source of scattered particles as the position of the
first atom. In reality, the particles scattered by the
first atom do not originate from a single fixed

Table 1

Comparison of various models used for the calculation of the blocking/critical angle
Model Potential BCA Small angle Source® Energy Temperature  In-plane

approximation

String® Chain® N/A N/A Point keV-MeV No Yes
Atomic chain? Chain® N/A N/A Point (recoil) Few MeV Yes Yes
Two-atom' 1/ Yes Yes From d.c.a.? 10 keV Yes Yes
Chain made of 1/ Yes Yes From d.c.a.2 keV No Yes
two-atom
elements"
Two-atom! 1/ Yes Yes Point Tens of keV  No Yes
Two-atom’ ZBL No No Exact simulation keV No Yes

#The origin of scattered particles after the first collision.
®Ref. [35].

“Based on Thomas-Fermi potential.

dRef. [20].

¢Based on Bohr potential.

fRef. [13].

€ Distance of closest approach.

D Ref. [4].

Ref. [5].

I Present work.
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point and particles scattered at different angles
have different energies. Most importantly, the in-
verse-power potential is too long-ranging and a
screened Coulomb potential should be used. An-
other formalism [20], employing the Bohr potential
for the interaction of a particle with an atomic
chain, was used for finding the angular size of the
blocking “dip” observed in MeV ion scattering.

Facing the problem of obtaining a realistic
blocking cone size and position to compare with
scattering and recoiling imaging spectrometry
(SARIS) measurements [21], a molecular dynamics
(MD) trajectory simulation code for calculation of
the critical takeoff angle has been created. Block-
ing cones are observed directly in SARIS [22] and
their sizes can be measured experimentally. An
initial attempt to find the blocking cone size de-
pendencies on energy E and interatomic distance d
has been made [22] and, from fitting of the mea-
sured dependencies for He — Pt, the power func-
tions d%7**001 and E026+901 were obtained. The
scattering angles (~90°) used in the SARIS block-
ing cone observations are not close to either for-
ward scattering or backscattering angles, which
makes direct simulations more favorable for this
type of measurement. In direct trajectory simula-
tions, no simplifying assumptions about scattering
angles or positions of the particles are made. In
particular, the correct spatial and energy distri-
butions of particles scattered by the first atom in
the target (source) is obtained automatically.

Here we present a blocking cone size calcula-
tion for a screened Coulomb potential. We find the
trajectory of the particle (projectile) in a field cre-
ated by two target atoms, assuming the Ziegler—
Biersack-Littmark (ZBL) interaction potential
[23] and neglecting the interaction between the
target particles. The parallel beam of particles
having the same energy but varying impact pa-
rameter with the first atom is scattered from the
target. Using a minimum exit angle search algo-
rithm, we single out the trajectory responsible for
the blocking cone formation, i.e. the envelope of
the blocking cone. After fitting the calculated data,
we obtain a universal formula for the blocking
cone size. Finally, we compare our exact calcula-
tions with other known expressions for the mini-
mum exit angle in the blocking geometry.

2. Methods
2.1. Experimental techniques

The measurements were carried out in a SARIS
spectrometer that has been described elsewhere
[22,24]. Briefly, a pulsed rare gas ion beam [25]
impinging on a surface scatters and recoils atoms
from the surface. The velocities of the keV ejected
atoms are analyzed by measuring their flight times
from the sample to a 7.5 x 9.5 cm® rectangular
position-sensitive microchannel plate (MCP) de-
tector [26] (TOF drift distance ~15 cm). The MCP
is mounted on a triple-axis goniometer [27] so that
it can be positioned at different angles relative to
the sample surface. The detector is gated so that
it can be activated in windows of several ps du-
ration that are appropriate for collection of spe-
cific scattered or recoiled atoms. Each window can
be resolved into 255 time frames, which can be as
short as 10 ns each. The sample is mounted on a
conventional manipulator that provides repro-
ducible rotation in both azimuthal é and incident o
angles to +1°. Good statistics are obtained with a
non-destructive ion dose of <10'* ions/cm?. Since
most of these scattered particles are neutral [28],
the term ‘“‘atoms” is used instead of “ions’’; the
MCP detector has equal sensitivity to both of these
when their energies are >1000 eV. The pulsed,
mass-selected ion beam [25] has a duoplasmotron
ion source that produces beam spot sizes down to
1 mm? with energies variable over the range 3-25
keV and a final energy spread of <50 eV. A two
step pulsing system produces pulsed beam widths
<30 ns and an average beam current of 10-100 pA
(0.1-1 pA dc current before pulsing). Countdown
circuitry permits pulse repetition rates over a range
of 5-20 kHz.

The Pt single crystal in the form of a disk 1 x 9
mm was polished within 0.5° of the [1 1 1] direction
and cleaned by repeated cycles of 3 keV Ar"
sputtering and annealing to 900 °C. Annealing
was accomplished by electron bombardment heat-
ing from behind the crystal. The surfaces were
considered clean and well ordered when no im-
purity features were observed in the SARIS images
and the LEED images exhibited sharp (1 x 1) pat-
terns.
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The scattering experiments reported herein were
carried out in a subsurface-sensitive backscattering
or “blocking configuration” [22] that uses large
scattering (0 = 70-135°) and exit (y = 25-100°)
angles. In such a geometry, the features of the
SARIS images are determined by the atomic tra-
jectories that result from large-angle scattering
events with subsurface atoms and blocking and
focusing of these trajectories by atoms in layers
nearer to the surface.

2.2. Trajectory simulations

Interpretation of the images has been described
elsewhere [22] and was facilitated by computer
simulations based on the classical theory of ion
scattering [29,30] using the binary collision ap-
proximation (BCA) simulation program scattering
and recoiling imaging code (SARIC) [31,32] and
“two-atom” MD simulations. SARIC is based on
the BCA, uses screened Coulomb potentials to
describe the interactions between atoms, and fol-
lows the trajectories of all scattered and recoiled
atoms in three-dimensions, thereby capturing both
in- and out-of-plane single and multiple collision
events. The ZBL universal potential [23] was used
for these specific simulations. Details of the SARIC
simulation are provided elsewhere [31,32]. The MD
simulation will be described below. The power
of the MD method is its simplicity, its capability

(b)

of providing exact results, and the decreased
computing time compared to 3D SARIC simula-
tions.

3. Results
3.1. Molecular dynamics simulations

In order to provide additional computational
support for the SARIS measurements along with a
more routine analysis of SARIS frames, an MD
program was developed to calculate the sizes of
blocking cones formed by scattering a parallel
beam of projectiles from a two-atom target by
consecutive scattering from the first and second
atoms. The studied system is shown in Fig. la and
consists of two atoms separated by a distance d.
When a beam of ions with parallel trajectories
interacts with atom 1 (scattering atom), the latter
acts as a source of scattered particles with a near
isotropic angular distribution. The position of the
source is displaced a very small distance p ~ 0.1
A from atom 1. Some of these trajectories are
deflected by the repulsive potential of atom 2
(blocking atom). This results in a hyperboloid-like
“blocking cone’” with apex on atom 1 and centered
approximately on the interatomic axis. It is nec-
essary to determine the critical blocking angle
when atom 2 begins to block the scattered trajec-
tories from atom 1.

Fig. 1. Systems of two atoms with interatomic distance d. (a) MD trajectory simulation for the same system showing the blocking cone
formation. The parallel beam of particles of energy E and mass M, is incident on two atoms of mass M,. There are two critical
scattering angles ¥, and ¥4, on both sides of the interatomic axis. The critical blocking angle . is defined as ., = 1/2(¥, + Yaown)-
(b) Emission from the secondary point source of scattered particles at a distance p from atom 1 is blocked by atom 2. The blocking
effect of the second atom is represented by a geometrical optics shadow behind a hard sphere of radius r at a distance d from the atom.

The critical blocking angle , & arcsin(r/d + 4) is indicated.
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Ion trajectories, critical angles with corre-
sponding impact parameters (p) with the first
atom, and differential scattering cross-sections
were calculated for this system. As an example, the
simulated dependence of the exit angle for 10 keV
He™ impinging on two Pt atoms separated by 5
A as a function of p with the first Pt atom is shown
in Fig. 2 (solid dots). The critical blocking angles
above and below the interatomic axis are v, and
Vaown» With corresponding py, and pgown. The
dashed line corresponds to the calculation for
a system with the second atom removed. The in-
set shows the differential scattering cross-section
aao = p((dyr/dp) sin l,b)71 versus the exit angle with
respect to the interatomic axis y for the two-atom
(solid line) and one-atom (dashed line) targets. The
area under each curve is preserved and corre-
sponds to the flux of particles scattered into the
—20° to 4+20° angle range.

The purpose of the MD simulation is to find the
two minimum in-plane projectile exit angles .,
and 4., on both sides of the interatomic axis
whose sum Y, + 4oy, yields the size of the
blocking cone (Fig. 1a). In order to follow the

40 .
L]
201 L
& p i e
= < up: e
S 9...  ®eeacegpee®”. . ... 20 -0 0 10 2
@ Y T-o Exit Angle y; deg
@ oo P T .
£
<
"
=
204
. ° .
T T T T T .
0.05 0.06 0.07 0.08

o

Impact Parameter, A

Fig. 2. (dots) MD simulation of the dependence of the exit
angle for 10 keV He* impinging on two Pt atoms separated by 5
A as a function of impact parameter p with the first Pt atom.
The critical blocking angles above and below the interatomic
axis i, and W, and the corresponding projectile impact
parameters p with the first atom p,, and pgown are indicated.
(dashed line) Calculation for a system with the second atom
removed. (inset) The differential scattering cross-section versus
exit angle for two-atom (solid line) and one-atom (dashed line)
targets. The area under each curve is preserved and corresponds
to the flux of particles scattered into the —20° to +20° range.

trajectories of the particles, the Newtonian equa-
tions of motion were numerically solved using a
fourth-order Runge-Kutta method [33]. The pro-
jectile and each of the target atoms were allowed to
interact according to the ZBL potential and there
was no interaction between the target atoms
themselves. The included parameters affecting the
size of the blocking cone are: mass ratios and
atomic numbers of projectile and target atoms,
interatomic distance d, primary energy of projec-
tile £, and “incident angle” w, defined as the angle
between the incident beam and interatomic axis in
the direction from the first to the second atom. The
angles of incidence are large enough (from 70° to
120°) to allow projection of scattered particles
both above and below the second atom. In-plane
quasi-single scattering trajectories that described
the two halves (upper and lower) of a blocking
cone were calculated. The trajectory of the pro-
jectile which, after being scattered with all possible
impact parameters from atom 1 towards atom 2,
would have the minimal exit angle, contributes to
the envelope of the blocking cone. In order to find
such trajectory for each side of the blocking cone,
the projectile was directed at atom 1 with p cor-
responding to the two values of the single scat-
tering angle 6,. For example, for the upper side,
the first value of 0, chosen was slightly greater
than the projectile incidence angle w in order to
direct the projectile almost head-on at the second
atom. This corresponds to the large value of the
total scattering angle due to atom 2. The second
value of 0; was chosen large enough to ensure a
large total scattering angle mostly due to atom 1
and almost no interaction with atom 2. The
smallest value of the total scattering angle corre-
sponding to the upper half-size of the blocking
cone lies somewhere between these two limiting
values. This minimum value was found using the
golden section minimum search algorithm for a
one-variable function [34].

The critical blocking angle Y/, = 1/2(/, + ¥ gown)
when atom 2 begins to block the trajectories scat-
tered from atom 1 so that the total scattering angle
starts to increase again was determined. Contrary
to the case of a monoenergetic “point emitter”
source [5,20,35], when a real atom serves as a
source of particles, Y, # V4o, and, therefore, the
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center of the blocking cone does not correspond
to the interatomic axis direction. The analysis was
conducted in two dimensions since it was compu-
tationally expensive to realize a machine algorithm
for finding a blocking cone size in three dimen-
sions. No temperature effects have been taken into
consideration in this calculation. It is known from
SARIC calculations [22] that introducing atomic
vibrations causes blurring of the blocking cone
edges leading to larger blocking cone sizes. This
fact has been accounted for in experiment by taking
the ¥, value at 70% of the maximum intensity near
the edge of the blocking cone.

3.2. Blocking cross-section

Experimental SARIS frames for 5-20 keV He™
and 20 keV Ne* scattering from a clean Pt(111)
surface in the [2 1 1] blocking direction are shown
in Fig. 3. Each frame represents the velocity-
resolved spatial distributions of He or Ne atoms
scattered along different angles and arriving at the
MCEP in a window of 16.7 ns duration. The frames
were selected to correspond to the flight time of
quasi-single scattered He or Ne atoms, e.g. at
~0.15 ps for 20 keV He, from Pt. The ordinate of
each frame is the particle exit angle (f) from the
surface and the abscissa is the crystal azimuthal
angle (0), i.e. each frame is an image in /3, J-space.
The § angles are defined with respect to the [121]
azimuth. Since the MCP is planar rather than
spherical, the lines of constant azimuthal angle
and constant exit angle are not linear and the
values of f and ¢ on Fig. 3 serve only as guides. If
the incident ions interact with only individual at-
oms, blocking cones or high-intensity “rings” due
to trajectory focusing are observable. When the
ions interact simultaneously with a group of atoms
in an ordered arrangement, e.g. an atomic lens
[36], intense focusing spots or streaks can be pro-
duced as observed in Fig. 3. Examples of SARIS
frames for other blocking directions are presented
elsewhere [22].

The table in Fig. 3 lists the sizes of the y, angles
for the Pt(111)-[211] blocking cones measured
by the SARIS method described elsewhere [22].
Briefly, the cones intersect the plane of the detector
as ellipses (Fig. 3) with semi-major (a.) and semi-
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He 20 keV - 8.3+ 0.2

Ne 20 keV -12.2+ 04

56" g Intensity
\ —
S [

Azimuthal angle &

Fig. 3. Experimental SARIS frames in f§, J- space in the crys-
tallographic [2 1 1] direction for scattering of 5-20 keV He* and
20 keV Ne* from Pt(1 1 1) with incident angles in the range 30—
35°. The 6 angles are defined with respect to the [12 1] azimuth.
Planar backgrounds have been subtracted from the images and
different intensity scales are used for each image in order to best
emphasize the blocking phenomena. Ellipses designating shapes
of blocking cones are drawn at 70% of the intensity. The table
lists the sizes of observed i, blocking cone angles.

minor (b.) axes. The sizes of ellipses are defined as
the angular aperture corresponding to the position
of 70% of the maximum scattered intensity at the
cone edges. This criterion has been chosen using
the condition of equality of blocking cone sizes in
SARIC simulations for a given target at 7 = 0 and
300 K. Finally, the blocking cone size is defined
from the expression
2

tan(y,) = = (1)

- b
ae
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Table 2

Results of linear fitting of experimental data along with SARIC
and MD calculations used for determination of the blocking
cross-section o

O - He 20 keV ¢)
n - He+15keV 0.0
154 A - He' 10 keV o
O - He' SkeV
v - Ne 20 keV ,89
~ O,Q A
S° 5 &
' 1 8’(/30 A
= P ONVANEAYN
o= 104 g’ -7
7] 3 DA
= Of's IEAY
//’,ﬁa’ a
_ g
S v
T T
5 o 10
d, A

Fig. 4. (symbols) Relative sizes of experimental blocking cones
from the experimental SARIS images as a function of the in-
teratomic distance d for different He™ and Ne™ energies. (da-
shed lines) Least-squares line fits to the experimental points.

where /i is the distance from the detector plane to
sample. The sizes of the experimental blocking
cones as a function of the interatomic distance d
for different energies are shown in Fig. 4. If these
sizes are plotted as 1/sin(y,) versus d, the de-
pendencies are nearly linear as shown by dashed
lines in Fig. 4. Such linear dependencies allow
determination of a “blocking cross-section™.

If the blocking due to atom 2 is approximated as
a geometrical optics-like shadow behind a sphere
with radius r placed at a distance « from atom 1
(Fig. 1b), it is easy to see that

1/sin(y,) ~ (2)

IR

In a simple approximation a = d + 4, therefore
the slope of the linear dependence 1/sin(y,) vs. d
gives the value of r. In this case the total scattering
cross-section of the second atom, or blocking
cross-section is equal to mr?. Table 2 summarizes
the results of such linear fitting of the experimental
data.

This simple empirical two-atom model for
blocking cone analysis was tested by performing

r (A) 4 (A) o =m? (A?)
He (20 keV)
Experiment 0.94 +0.04 1.7£0.5 2.8+0.1
SARIC 1.07 £0.03 26+03 3.6+£0.1
MD 1.01 £0.01 240+0.07 3.20£0.03
He (15 keV')
Experiment 1.05+0.08 2.0+0.5 35+£03
MD 1.08 £ 0.01 231+0.07 3.66£0.03
He (10 keV)
Experiment 1.20 £ 0.04 24+0.5 45402
SARIC 1.31+0.03 3.0£0.2 54+£0.1
MD 1.18 £ 0.01 220+0.07 4.37+£0.04
He (5 keV)
Experiment 1.28 +0.06 1.8+04 5.1+£0.2
SARIC 1.49 £ 0.04 28+03 7.0+£0.2
MD 1.37+0.01 2.01+£0.06 5.90+0.04
Ne (20 keV)
Experiment 1.5+0.1 224+0.6 7.1+£0.5
MD 1.38 £ 0.01 1.86£0.06 598 £0.04

SARIC and MD calculations for an isolated sys-
tem of two atoms using different Het and Ne™
energies as shown in Figs. 5 and 6. The results for
each energy value exhibit nearly linear dependen-
cies versus interatomic spacing. Linear fittings of
SARIC and MD calculations are also presented in
Table 2. The expressions obtained are in excellent
agreement with the experimental results of Fig. 4.
We note that MD simulations give better agree-
ment with experimental values than SARIC simu-
lations. This results from the fact that correlated
scattering events are treated more precisely by
exact MD trajectory simulations than the BCA.
Also, from the calculated curves we note that the
dependencies depart from linearity as d decreases,
although these deviations are beyond our experi-
mental resolution.

3.3. Universal formula for blocking cone size from
MD simulations

The simple geometrical optics analogy for block-
ing cone formation by a second atom described
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Fig. 5. (symbols) SARIC BCA simulations of the relative sizes
of the blocking cones as a function of interatomic distance d for
a two-atom target at 7 = 0 K for He™ projectiles at three dif-
ferent energies with incident beam angle w = 110°. (dashed
lines) Best fit line to the simulated points.

in Section 3.2 gives only an estimate of the mea-
sured blocking cone sizes. In order to determine
accurate blocking cone sizes for any interacting
atomic pairs, energies, and angles, more exact
calculations are necessary. The procedure for ob-
taining a universal formula for the blocking cone
size will now be developed. Fig. 6(b) shows a plot
of logy, versus logd for He and Ne at various
energies scattered from Pt with an o = 90° inci-
dence angle. Similar near linear dependencies are
found in the logy, versus logE plots for various
d (not shown here). The critical blocking angles
are determined as ¥, = 1/2(,, + W4o4n), Where
Wdown = kW, With k > 1. In a first approximation,
k ~ 1 so that Yy, =~ Wy, and Y, ~ ¢, As a re-
sult, the calculated values of ¥, can be fitted with
a second-order surface z =z(x,y), as shown in
Fig. 7, with x = In(d), y = In(E), and z = In(,,,),
where E is the projectile energy in keV and d is
the distance between the target atoms in A. The
blocking cone sizes found for various parameters
(My,M>,Z,,Z,,®) are fitted with a formula ana-
logous to the one derived for the inverse-power
potential [5,22],

154 He 20
He 15
He 10
He S5
~ Nets
5? 10- ’ Hee3
Nt " Ne 10
% . Ne5
-
5_
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5 10 15
40
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3 , ——
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Fig. 6. MD simulations of blocking cone sizes as a function of
interatomic distance d for the same two-atom target used in Fig.
5 for five He (solid lines) and four Ne (dashed lines) energies.
(a) Relative sizes of blocking cones. (b) Sizes of blocking cones
on a logarithmic scale. The numbers to the right of the ele-
mental symbols represent their kinetic energy in keV.

Yo =Dd"E™", (3)

but here D, n, and m are now functions of the five
parameters (M,,M,,Z,,Z,,w). Not all of these
parameters are independent, as follows from the
properties of the equations of motion and form of
the potential function.

Due to the invariance of the equations of mo-
tion with respect to the transformation M; — kM;,
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10

Fig. 7. Example of a second order surface in In(d), In(E), and In(,,,) space for the He*—Pt combination used in the universal fitting.

t — t/\k (see Appendix A), where M, are the
masses of interacting particles and ¢ is time, the
trajectory shape is the same for the combinations
of particles connected via Eq. (A.2) provided that
the particles have the same initial energies.
Therefore, there is only one independent variable
in the set (M, M,), namely, the ratio M,/M,. It is
possible to reduce the number of independent pa-
rameters in the set (Z;,7,) by finding their com-
binations based on the following. The screened
ZBL potential is a product of a “Coulomb” term
containing Z,Z, and a screening function contain-
ing (Z)% +Z9%) [23]. In general, both of these
terms should be incorporated into the fitting ex-
pression. We find that the In(Z;Z;) term is most
important in the “energy” term m and pre-expo-
nential term D while the (Z)** + Z9%*) term is most
important in the “distance’ term n. As a result, we
can write:

In(D) :f<%7ln(2122),ln(w)),
n=n( 42 4 2% ), @)
m=m (%,ln(ZlZz), ln(w)>.

After fitting In(},,) = z (Fig. 7) with a second-
order surface in x and y (z=F + Fix + Bx> +
Fixy + Fyy + F5)?) for a fixed set of (M, /M>; Zy, Z,;
), six values of F; in (M,/M,; Z\,Z,; w) space are
obtained. It was possible to fit the calculated
points for 120 projectile—target combinations by a
hyperplane in [M,/M,, In(Z,Z,), In(w)] space for
four of the coefficients (Fy, F3, Fy, F5) of decompo-
sition of In(y,,) in x and y and in [M,/M,,
703 + 792 In(w)] space for the other two (F; and
F>). The range of target interatomic distances used
in the calculations was d = 2-13 A, the energy
range was E = 3-20 keV, the w range was 70-125°,
the M, /M, range was 0-0.33, and the product Z,2,
varied between 40 and 1600. The final fitting ex-
pression for finding v, is

Yy = exp (Fy + Fix + Bx° + Fxy + Fyy + F5y’),

where
M,
E = f; + hlﬁ + gi ln(lez) + e; ln((l)) (63)
2

for i =0, 3-5, and
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Table 3
Numerical values of parameters in Egs. (6a) and (6b) found from fitting MD calculations of the blocking cone size (i/,,)
0 1 2 3 4 5
fi 1.34 £ 0.04 0.134+0.03 —0.074 £ 0.003 —0.060 £ 0.004 0.0096 + 0.0009 —0.0404 + 0.0009
h; 0.90 +0.01 —0.24 +0.01 0.0255 + 0.0006 0.0084 + 0.0008 0.047 + 0.002 —0.0010 £ 0.0001
g 0.174 £ 0.001 —0.133+£0.003  0.0093 + 0.0002 0.0043 £ 0.0001 0.0167 £ 0.0004 0.00253 £ 0.00003
e 0.36 +0.01 —0.078 £0.007  0.0053 + 0.0005 0.0140 £ 0.0009 —0.069 £ 0.003 0.0032 £ 0.0002
Table 4

Numerical values of parameters in Eq. (7) for finding the coefficient £ used in determining the size of the lower part of the blocking cone

for four common systems. In all calculations, w = 90°

I H A I I I

He-Pt 0.4578 £0.0002 —0.107540.0001 0.00945 4 0.00003 0.01535 +0.00003  —0.1085 £ 0.0002 0.00510 =% 0.00003
Ne-Pt 0.1749 +0.0001 —0.1941 £0.0001 0.0212 4 0.0002 0.0253 £ 0.0002 —0.1653 +0.0009 0.0077 + 0.0002
Ne-Ni  0.2341 +0.0002 0.0042 4 0.0001 —0.00536 +0.00002 0.01017 +0.00003  —0.0980 £ 0.0001 0.00481 + 0.00002
He-Si  0.1494 £ 0.0001 —0.0150 +0.0001 —0.00051 4 0.00001 0.00667 =+ 0.00001 —0.0747 +0.0001  0.00800 = 0.00001

M,
F=f+h M—l + (2% + 207) 4 ¢In(w)  (6b)
2

for i =1, 2. The numerical values of the coeffi-
cients fi—e; are given in Table 3. The values of ¥,
found using Eq. (5) are within 0.5° of the exact
values obtained from MD simulations. The lower
part of the blocking cone can be estimated from
Wdown = kW, where k is in the range 1.0-1.3 and is
dependent on the same variables as i,,. We do not
provide a universal fitting formula for v, here
since its fitting coefficients represent surfaces
whose analytical forms in the space of the pa-
rameters are not that straightforwardly determin-
able as in case of . Table 4 presents the fitting
coefficients Fj—F of the expression
Ink = F, + F/Ind + Fi(Ind)’ + F{Ind In E
+FInE + F(InE)’ (7)

for the case of four projectile-target combinations.

4. Discussion
4.1. Comparison of BCA and MD simulations

Accurate calculations of blocking cone sizes are
important when using SARIS and other ion scat-

tering experiments for surface composition and
structure determination. A correct description of
blocking cone sizes in SARIS experiments requires
essentially exact calculations of the scattering tra-
jectories. The reason for this is that large scattering
angles, i.e. ~90°, are used in these types of experi-
ments. This is different from the case of shadow
cone calculations where, due to the small scatter-
ing angles, momentum and small angle approxi-
mations give satisfactory results. Another reason
for using trajectory simulations when determining
blocking cone size is that due to the number of
atoms encountered along the trajectory, correla-
tional effects must be taken into account. The BCA
[37] treats this problem reasonably well when as-
ymptote displacements are small compared to in-
teratomic distances. Our comparison (Table 2)
of MD trajectory simulations with SARIC BCA
calculations shows that use of the BCA approxi-
mation leads to slightly larger (~18%) blocking
cross-sections. A simplifying assumption in the
BCA is that the energy and direction of a particle
is changed instantaneously as it proceeds along its
trajectory at certain positions in space where the
collisions are assumed to take place. In MD cal-
culations, the energy of the particle changes con-
tinuously along the trajectory. For a two-atom
target, this simplifying assumption may lead to the
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fact that the impact parameter with the second
atom is slightly greater than in MD simulations.
Unlike Oen’s shadow cone calculations [2], in
blocking cone calculations it does not seem pos-
sible to find a combination of parameters as one
universal variable for blocking cone size depen-
dence.

Our calculations show that the more accurate
MD simulations reveal the asymmetry in the
blocking cone size with respect to the interatomic
axis. For small d and E, the asymmetry of the
blocking cone y = Vg4, — ¥y, is maximum and
decreases with increasing d and E. This is impor-
tant in the low-energy range when the critical an-
gles are large and the displacements of the ““virtual
source” from the first atom cannot be neglected.
We note that although in the double alignment
experiments in the RBS technique this asymmetry
is small enough to be neglected [9], care must be
taken in LEIS when drawing conclusions about
surface relaxation based on the shape of the
blocking cone.

Our consideration is limited to only the case of
T = 0, or, in other words, temperature is not a part
of the model. The case of T # 0 requires the use of
a statistical model, of which our deterministic
model is a limiting case. In the framework of a
statistical model, an average quantity correspond-
ing to the deterministic blocking cone size can be
introduced. Presently, it is not clear how our
model could be generalized to include target vi-
brations. In principle, one could obtain the prob-
ability distribution of the blocking cone sizes for
a given amplitude of target vibrations, but this
would mean an increase in computational time of
several orders of magnitude, which is already a
critical factor. Instead, we extrapolate the experi-
mental blocking cone sizes to the case 7 =0,
where they can be compared to our calculations.

4.2. Comparison to other published results

The results of our fitting formula for the
blocking cone sizes are compared with the exper-
imental SARIS cones and other blocking cone
expressions found in the literature (see Fig. 8 and
Table 1). The subject has been widely discussed in

high-energy ion scattering where the formulas are
most accurate. The sizes of the observed blocking
dips are about one order of magnitude less than
the sizes of the SARIS blocking cones. These for-
mulas do not give accurate blocking cone sizes for
our low-energy region.

The first and simplest theory of the blocking
effect was given by Oen [18] for explanation of the
observed dip in the intensity of a-particles scat-
tered in the (11 1) direction from W bombarded by
60 keV 222 Rn™ [19]. It was assumed that the source
of a-particles was at a position of a target atom
and blocking was due to the nearest atom in the
(111) direction. The scattering intensity was cal-
culated but an explicit formula for ¥, was not
provided. Martynenko [4] and Mashkova and
Molchanov [5] derived the following expression for
the minimum exit angle for case of a A/r° potential
as

AR COA
l//min_ (1+;>< Eds F(E) ) ’ (8)

2

where 4 = 0.8312,Z,¢%a"" /s, ap = 0.4685/(Z; +
Zi/ 3)1/ ? are the constant and screening length for
the form of the inverse-power potential provided
by Lindhard [38], and I" is a gamma-function. This
expression was obtained for a target viewed as an
atomic chain consisting of two-atom elements. The
two lines calculated with this formula for inverse-
square and inverse-cube potentials are shown in
Fig. 8. The 4/r*-type potential yields ~53% smaller
blocking cone size, although it provides the cor-
rect slope on the logarithmic scale. The correction
for non-zero distance of the scattered projectile
from the first atom after the first collision [4,5] was
not taken into account since it further diminished
the blocking cone sizes.

An analytical expression for the case of an
atomic chain was provided by Lindhard as

4.663Ca; \'?
V=1 <logTd“L) (9)
for y < ar/d, and
2.828y, Cayp \ /*
g (2 (9%)
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20 keV 15 keV

10 0
d, A

Fig. 8. Comparison of the fitting formula developed herein for the blocking cone size with experimental results and other blocking
cone size expressions found in the literature for the He-Pt projectile-target combination at four different energies. Symbols—experi-
mental SARIS data. The lines represent blocking cone sizes calculated from: (1) our fitting formulas (Egs. (5)—(7)) with « = 90° and
coefficients from Tables 3 and 4. (2) Lindhard’s formula [35]. (Eq. (9b)), (3) Inverse-power potential A/r* (A from Lindhard [38]) for

s =2 [4,5]. (4) Inverse-power potential 4/r*(4 from Lindhard [38]) for s = 3 [4,5]. (5) Tulinov et al. [20] formula.

for ¥ > ay/d, where W, = (2Z,Z:¢*/Ed)"” is the
Lindhard critical angle and d is the interatomic
distance in the chain. In our case > ar/d. The
line for y, calculated from Eq. (9a) with a fitting
coefficient C = /3 as proposed by Lindhard [35] is
shown in Fig. 8. The Lindhard lines are ~10%
higher than our results. The modified value of the
Lindhard parameter C' = C/1.2 gives somewhat
better agreement with our formula. As observed
from Fig. 8, the Lindhard curve is the closest one
to the exact calculation for all analyzed energies.
In the MeV region, due to the much larger
ranges of particles in solids, blocking effects are
usually described as interactions of a particle with
an atomic row. The angular size of the “dips”
observed in such scattering experiments has been
calculated [20] for interaction of a particle with an
atomic chain using the Bohr potential to be

1//§2§<K0<\2—b_d>+2>, (10)

where K is the ml%iiﬁed Bessel function, ag =
0.529/ (le/3 +Z§/3) Ais the Bohr screening
length, and b = Z;Z,¢’/E. This dip can be ob-
served along any low-index crystalline direction
where atoms in the crystal are “lined up” and are
closely spaced. The typical size of a dip for these
energies ranges from a fraction of a degree to
several degrees. The size of the blocking cone
calculated from this formula for keV He — Pt
gives values of y_ that are 2.5-3.5 times larger
(Fig. 8) than our experiment and calculation.

As shown in Fig. 8, our fitting formula provides
the best agreement with the experimental data. If
the constants in Egs. (8), (9a) and (9b) are modi-
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fied, they can be made more suitable for our en-
ergy range.

5. Conclusions

The expression developed herein for calculation
of blocking cone sizes in LEIS (3-20 keV) has been
successfully applied to interpretation of SARIS
experimental data. The expression was developed
by fitting data points produced by MD trajectory
simulations with a ZBL potential for 120 atomic
collision pairs. In observations of blocking cones
in the SARIS experiment, the effect of the blocking
atom is closely approximated by that of a hard
sphere of constant radius if the energy and inter-
acting species are fixed. The cross-section of the
sphere, nr2, with » ~ 1 A, is called the blocking
cross-section. This value provides an estimate of
the total scattering cross-section of the process
under consideration. The blocking cones in this
low energy range are appreciably asymmetric with
respect to the interatomic axis, with the “lower”
part being larger than the “upper” part. At small
interatomic distances and low projectile energies,
the difference in the blocking cone sizes can be
as large as 15%. The results of the MD blocking
cone size simulations using the ZBL potential and
SARIC simulations are in good agreement with ex-
perimental blocking cone sizes. Finally, compari-
son with the various expressions for the blocking
cone size found in the literature has been per-
formed. The best agreement is with the Lindhard
formula and the 4/r*-type potential, if the con-
stants C and A from these formulas are modified.
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Appendix A

In the Lagrangian equations of motion

0 ov
M) +— = 0. A.l

The transformation to a new set of masses via

M, — kM;, (A.2)
where k£ does not depend on i, can be reduced to
the transformation of the time scale

! — t/Vk, (A3)

so that the equations remain unchanged in the new
time variable ¢

0 orv
— (Mig) +~—=0 A4
a7 (M) + (A4)

If the initial energy of the projectile is kept con-
stant, although the projectile and target masses are
changing according to Eq. (A.2), these new equa-
tions will have the same solution because the
projectile velocity scales as vk with its mass scal-
ing as k and its energy remaining unchanged. This
means that in the new time variable ¢; = ¢o and
qy = qo. It follows that in order to obtain a solu-
tion for M; from a solution for M;, one should
decrease all the particle velocities by a factor of vk
and leave the trajectories unchanged. For our
analysis, this means that the blocking cone size
depends on the ratio M, /M, and not on M; and M,
independently.
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