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ABSTRACT:  

Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. 

Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is 

promising to overcome this issue. Using first-principles calculations combined with the cluster expansion 

method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 

2D SixC1-x monolayers with 0ÒxÒ1. Upon varying the silicon concentration, the 2D SixC1-x present two 

distinct structural phases, a homogenous phase with well dispersed Si (or C) atoms and an in-plane hybrid 

phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties 

with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC 

domains, the homogenous structures can be semiconducting or remain semi-metallic depending on a 

superlattice vector which dictates whether the sublattice symmetry is topologically broken or not. 

Moreover, we reveal a universal rule for describing the electronic properties of the homogenous SixC1-x 

structures. These findings suggest that the 2D SixC1-x monolayers may present a new ñflatlandò of 2D 

materials, with a rich variety of properties for applications in electronics and optoelectronics.  
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Since the discovery of graphene in 2004,
1
 two-dimensional (2D) atomic crystals have stimulated 

extensive research activities due to a number of unusual properties and potential applications in next-

generation devices.
1-3

 Silicon, on the other hand, is the backbone material of the current semiconductor 

industry, and will continue to play a key role in future nanotechnology. Silicene, the silicon analogue of 

graphene, has recently become a new popular 2D material not only due to its Dirac electronic dispersion 

at the Fermi level (similar to graphene)
4-7

 but also because of its compatibility with current Si-based 

electronics. A number of experiments have realized the epitaxial growth of silicene on some metal 

substrates, such as Ag,
8-11 Ir,

12
 and ZrB2.

13
 However, both graphene and silicene exhibit zero band gaps, 

making them unsuitable for electronic devices with logic operation. To overcome this issue, extensive 

research efforts have been devoted to realize a controllable band gap in these materials. Several strategies, 

such as patterning into nanoribbons,
14

 applying an electrostatic gate
15 and using chemical 

functionalization,
16

 have been proposed to effectively open a band gap in graphene and silicene. Although 

these strategies are useful for certain applications, realizing a band gap in the range of 1.0ī2.0 eV, which 

is required for room temperature operation, remains a challenging task, in particular when electron 

mobility needs to be less compromised.  

Beyond graphene and silicene, the research enthusiasm on 2D materials has been largely 

extended into other inorganic 2D materials. In recent years, there have been numerous 2D materials 

reported, such as BN,
17-18 SiC,

16, 19
 CN,

20 ZnO
21

 and MS2
17, 22

 etc. However, the quest of semiconducting 

2D materials is among the most research attention. Especially, it is desirable to realize a 2D 

semiconductor with strong in-plane covalent bonds that can resist large mechanical deformation and 

external chemical corrosion. In this respect, the 2D silicon carbide monolayer represents an ideal 

candidate as not only does it shows a 2.52 eV band gap
16

 but also inherits the robust structure from 

graphene. Very recently, Lu et al. predicted a new Si-C monolayer, known as g-SiC2,
23

 which has a 

desirable band gap of 1.1 eV and holds great promise for optoelectronic applications. An overview of 

theoretical progress in this field suggests that changing the stoichiometry and bonding structure of the 2D 

Si-C monolayers can lead to remarkably different properties, as demonstrated in the pt-SiC2,
24

 and SiC3.
25 

Recently, Gao performed a comprehensive structure search based on particle-swarm optimization method, 

and found that graphite-like SiīC structures are strongly favored, even though a cubic SiC3 structure is 

exceptionally stable at this specific composition.
26 However, the study of 2D Si-C system is still limited 

to several scattered results, and a full physical picture describing their structures and functions as well as 

the electronic tunability remains far from obvious. Compared with the commonly used strategies, alloying 

carbon and silicon atoms in such two dimensional binary systems will be particularly interesting, as it 



promises composition-modulated electronic structures. To this end, several fundamental issues must be 

addressed: (i) what are their favorable structures at different C:Si ratios? (ii) Are all the structures 

semiconducting? (iii) what is the relationship between their structures and functions? 

In this work, based on first-principles calculations combined with cluster expansion (CE) 

approach, we perform a comprehensive study to explore the structural and electronic properties of the 

monolayer SixC1-x materials. The CE method has been successfully used before to explore the alloyed and 

adsorbed 2D systems.
27-30 The 2D SixC1-x presents two distinct structural phases, homogenous phase and 

in-plane hybrid phase with SiC domains. The in-plane hybrid phase shows uniform semiconducting 

properties with widely tunable band gaps due to quantum confinement effect imposed by the SiC 

domains. In contrast, the homogenous structures can be either semiconducting or semi-metallic depending 

on a superlattice vector, which complies with a universal rule similar to the gap-chirality relationship in 

carbon nanotubes. Our findings open a new way to designing 2D semiconductive atomic crystals alloyed 

by earth-rich silicon and carbon and might guide the fabrication of functional devices compatible with 

current silicon electronics. 

RESULTS AND DISCUSSION: 

We obtain values of 1.42, 2.27and 1.79Å for the C-C, Si-Si and C-Si bonds in pristine graphene, 

silicene and SiC monolayers, respectively, and the buckling height of the silicene is 0.45 Å, in agreement 

with previous results.
7, 31

 The SixC1-x sheet can be viewed as graphene (or silicene) with substitutional 

doping of Si (or C) atoms in different concentrations. As has been established, graphene is a pure planar 

monolayer, while silicene undergoes a slight out-of-plane buckling, due to the preference of sp
3
 

hybridization for Si atom. We perform test calculations to examine whether we should consider buckling 

in SixC1-x sheet. We first choose the planar Si0.5C0.5, which is composed of only Si-C bonds, and purposely 

introduce buckling along the normal direction; the buckling simply disappears after relaxation by first-

principle calculation, implying that the Si-C bonds prefer sp
2
 hybridization rather than sp

3
 hybridization. 

Therefore, we introduce buckling only for the second half CE-2 (xCE-2=0.5~1with Si-Si bonds), while for 

CE-1 (xCE-1=0~0.5 without Si-Si bonds) all the structures are set planar (see insets of Figure 1e). Over 300 

structures are predicted and tested by DFT calculation when varying x from 0 to 1. We are aware that in 

our structural search the Si (or C) atoms are restricted to the same honeycomb sublattices. However, our 

testing calculations confirm that the structures allowing Si atoms to distribute on different sublattices 

correspond to high-energy states. This is also consistent with the prediction by Ding and coworkers that 

the Si dopants in the 2D SiC3 sheet preferably sit at the same sublattice rather than at the different 

sublattices.
25

 



Among the obtained >300 structures in the CE-1 and CE-2 calculations, we mainly focus on the 30 

structures with the lowest formation energy at each concentration, with 15 structures in each half. We 

optimize the 30 structures with refined parameters to get more precise atomic structure and total energy, 

and their atomic configurations are displayed in Figure S1 and S2. Interestingly, these structures can be 

classified into two phases: the in-plane hybrid phase rich in SiC domains (Figure 1a and d) and the 

homogenous phase (Figure 1b and c). For convenience, we refer to the minority element as dopant.  For 

the in-plane hybrid phase, SiC domains separate the graphene (or silicene) sheet into nanoribbons, while 

for the latter phase the Si (or C) dopants are uniformly dispersed in the graphene (or silicene) sheet. The 

stability of these structures can first be evaluated by comparing their Ecoh and ŭF, as summarized in Figure 

1e and f. The straight line connects Ecoh and ŭF of graphene and silicene at x=0 and 1, respectively. 

Negative values of Ecoh indicate that all the 30 structures are energetically favorable, and their relative 

stability can be easily measured by comparing the altitude ŭF from the line. The SiC monolayer (i.e. 

x=0.5) is shown to be thermodynamically stable since its ŭF is below the straight line with a negative ŭF 

of ī0.016eV, whereas all the remaining SixC1-x structures have their ŭF located above this line and thus 

are metastable with respect to graphene and silicene. However, ŭF for these structures are distributed 

within a very narrow range of 0.057-0.329 eV, suggesting their considerable stability. It is also 

worthwhile to mention that the ground states at x=0.25 and x=0.33 are pretty the same structures as the 

recently reported 2D SiC3
25

 and g-SiC2
23

 sheets obtained by the particle-swarm optimization method. 

More interestingly, at x=0.2 and x=0.4, our CE-predicted ground states are more stable by 11 and 50 

meV/atom than the SiC4 and Si2C3
32

 obtained using the particle-swarm optimization technique. The 

computed phonon spectra of the new SiC4 and Si2C3 are plotted in Figure S3. Clearly, the absence of 

imaginary frequencies indicates the inherent dynamical stability. To make our predictions more 

convincing, we further performed a global minimum search for the 2D Si2C3with fixed composition using 

CALYPSO package,
33

 free of hexagonal mesh limitations. The same structures composed exclusively of 

hexagons, as predicted by the CE method, were reproduced when the generated structures amount to 900. 

These facts give us confidence in the CE method for reaching the ground states of 2D alloy structures. In 

addition to the thermodynamic stability, we also examine the dynamic stability by using ab initio MD 

simulations. The simulations were performed with 2×2 supercells for the structures at x=0.1(in-plane 

hybrid), x=0.167(spatially well dispersed) and x=0.22(largest ŭF value of 0.329eV) at temperature of 

2500 K. No remarkable structural disruption is observed in the three structures throughout 10 ps 

simulations (see snapshot in Figure S4), confirming their robust structures against thermal fluctuation at 

high temperature.  



Having established the favorable structures of 2D SiC sheets, we proceed to explore their novel 

properties. First, we examine the most important electronic parameter, the band gap of these 2D SiC 

sheets. A rich variety of electronic properties, such as indirect (black hollow hexagons), direct (red solid 

hexagons) gaps and semi-metallic (blue solid triangles) behaviors appear when x changes from 0 to 1, as 

shown in Figure 2. Most of the SixC1-x sheets exhibit semiconducting properties, while only two 

homogenous structures, Si0.17C0.83 and Si0.17C0.83, are semimetallic, akin to graphene and silicene. 

Generally, the band gap first increases with increasing x and reaches a peak of 2.87eV at x=0.5 (2D 

silicon carbide), beyond which the band gap drops to 0 eV as x further increases to 1. The entire plot of 

band gap resembles a volcano plot characterizing the catalyst performance. It can be concluded that the 

band gap of SixC1-x sheets is proportional to the Si (or C) doping concentration in graphene (or silicene). 

Here, we analyze the first half of x=0~0.5 to reveal the mechanism for the gap opening, and similar 

mechanism should hold for the other half. Generally, due to difference in electronegativity between C and 

Si atoms, valence electrons of Si tend to transfer to the nearest C atoms in the SixC1-x sheets, and C-Si 

bonds show ionic character as shown in the background of Figure 3c. The delocalized ˊ electrons in 

graphene become localized by introducing Si dopants due to the potential perturbation. As the doping 

concentration increases, C-Si bonds proliferate, leading to more significant localization of the ˊ electrons, 

giving rise to the increase of band gaps with x. The silicon carbide (Si:C=1:1) represents the extreme, in 

which all the bonds are ionic maximizing electronic localization. Increasing x further, the proportion of 

Si-C bonds starts decreasing and, as a consequence, the band gap decreases. As the GGA underestimates 

the band gap of most semiconductors, we perform test calculations using the hybrid HSE06 functional 

and do not find qualitative changes in our conclusions. For example, the band gap of the Si0.1C0.9 is just 

enlarged from 0.60 eV calculated with GGA to 0.72eV obtained with HSE06. Considering the 

computational cost, we mainly focus on the GGA results in the following discussions.  

Next, we take the Si0.1C0.9 as a model to further explore the detailed structural and electronic 

properties of the in-plane hybrid SixC1-x sheets. The atomic structure of Si0.1C0.9 is shown in Figure 3a, 

where the shaded regions, each containing a SiC chain, stand for the SiC domains and divide the sheet 

into parallel aligned armchair C ribbons. The energetic preference of such an in-plane heterostructure 

suggests that the SiC and C tend to undergo a phase separation at this specific concentration. The 

corresponding band structure in Figure 3b shows a direct band gap of 0.60 eV, which forms near the 

middle point of the line from the ũ to M1. It is well known that quantum confinement effect is the main 

factor causing a non-zero band gap in graphene nanoribbons
34

 as well as in graphene-BN hybrid 

structures.
35

 If the SiC chains are considered as the BN domain or a vacuum region, similar mechanism 

should be anticipated for the band gap opening in the Si0.1C0.9 structures. To verify this mechanism, we 



examine the difference between the deformation electrostatic potential, which is defined as the total 

electrostatic potential of the Si0.1C0.9 structures subtracting the sum of isolated atoms. Figure 3c presents 

the plane-averaged electrostatic potential different. Obviously, the potential of SiC chains rises to 0.22eV 

while that of armchair C ribbons is lowered by 0.04~0.10 eV. The band gap opening of the Si0.1C0.9 sheet 

results from the quantum confinement due to the potential well within the C ribbon. The same results can 

be found in Si0.9C0.1 sheets of hybrid phase (as shown in Supporting Information Figure S5). Generally, 

the sheet with a wider C domain has a smaller band gap, supporting the quantum confinement as a 

dominating mechanism for the band gap opening. However, due to the very narrow widths of the SiC and 

C domains, the electronic states from different domains are strongly overlapped. Therefore, the Si0.1C0.9 

structure behaves more like an electronic alloy, rather than a true electronic heterostructure. This is indeed 

reflected in the plots of partial charge density which shows that the near-gap electronic states are 

distributed in both the SiC and graphene domains (as shown in Figure 3b), in particular for the charge 

density distribution of the valence band maximum (VBM). Enlarging the domain width may transform 

the system into an in-plane electronic heterostructure that can confine charge carriers inside a specific 

type of domains, which will be an interesting topic for future works. 

In what follows, we turn to discuss the homogenous structures of the SixC1-x sheets. Within the 

ground state structures, we find three homogenous structures, Si0.17C0.83, Si0.33C0.67 and Si0.83C0.17, which 

have the dopants atoms spatially well dispersed within the graphene (x<0.5) or silicene (x>0.5) 

framework. Besides, some metastable structures are also found in the homogenous phase, mostly 

distributed in the range 0.125<x<0.333 and 0.667<x<0.928. A common feature in these structures is their 

three-fold symmetry, like the 2D SiC sheet. We find that the homogenous sheets show richer electronic 

properties, which can either be semiconductive (e.g. Si0.33C0.67) or semimetallic (e.g. Si0.17C0.83 and 

Si0.83C0.17), in sharp contrast to the in-plane hybrid ones that show uniform semiconductive properties. To 

gain deeper insight into the structure-property relationship, we set up a structural description for the 

homogenous SixC1-x sheets by defining a superlattice vector R = na1+ ma2 connecting two neighboring 

dopants Si (or C), where a1 and a2 are the primitive lattice vectors of graphene, as illustrated in the inset 

of Figure 4a. With this description, Si0.17C0.83 and Si0.33C0.66 can be represented as R = 1a1+ 1a2and R = 

1a1+ 0a2, which are marked as (1,1) and (1,0), respectively. To make our analysis more general, we also 

design several homogenous SixC1-x sheets, whose doping concentrations are beyond what the CE 

calculations have shown, and their superlattice vectors are supplementary to those of the predicted 

structures. Figure 4a summarizes band gaps for the homogenous SixC1-x sheets ranging from (1,0) to (3,1). 

Both Si doping of graphene (blue line) and C doping of silicene (red line) are considered in our 

computation, and detailed band structures are displayed in Figure S6 (Si dopant in graphene) and Figure 



S7 (C dopant in silicene). It is found that all the structures with (n-m)mod3 = ±1 possess sizeable energy 

gaps ranging from 0.137 to 0.726 eV, while the rest with (n-m)mod3 = 0 remain semimetallic, complying 

with a similar gap-chirality relationship as in CNTs,
36 yet opposite to the previously revealed rule for 

antidot graphene.
37

 With this rule, it is easy to deduce that all the homogenous sheets with a superlattice 

vector along armchair directions retain semi-metallic behavior, while those with the vector along the 

zigzag or random directions can be either semiconductors or semimetals depending on (n-m)mod3. This 

is somewhat surprising in a sense that the electronic property of SixC1-x sheets can be independent of 

spatial ordering of dopants. The distinct superlattice vector-gap dependence in such pure 2D systems thus 

calls for an explanation.  

We take the (1,0), (1,1) and (2,0) structures as examples to clarify the underlying mechanism. 

Firstly, the energy-resolved charge density is employed to identify the difference between the CBM and 

VBM as shown in Figure 4b, c and d. It is shown that the VBM of the (1,0) and (2,0) is originated from 

the ˊ electrons of carbon atoms on the same sublattice, while CBM is dominated by the ˊ
*
 electrons of the 

Si and C atoms on the other sublattice. It appears that the symmetry of sublattices in the (1,0) and (2,0) 

are broken by Si doping, and thus the origin of band gap is due to the staggered sublattice potentials. This 

is very similar to the band gap in h-BN that is due to the ionic potential difference between B and N 

atoms. The electrons need to overcome the barrier formed by the sublattice potential difference when 

transferring from VBM to CBM. The situation becomes different in the band structure of the (1,1) 

structure, in which we observed two graphene-derived linear bands around the Fermi level. The two linear 

bands are a characteristic of a semimetal, despite a tiny band gap formed slightly below the Fermi level. 

The charge densities corresponding to the two bands uniformly reside on all the C atoms (on different 

sublattices), and little on Si atoms. Therefore, the two C sublattices in the (1,1) structure remain 

symmetric, and the Dirac cone survives from the doping of Si atoms. In addition, we identify a double-

degenerate impurity-like band (blue one in Fig. 4c) below the Fermi level, which results from the 

potential perturbation induced by the Si dopants and may contribute the electronic transport through the 

structure. To further understand the pattern-dependent symmetry in the homogenous SixC1-x sheets, we 

use the superatom model proposed by Shima and Aoki, who have successfully interpreted the electronic 

structure of superhoneycomb system using group theory.
38

 First, the unitcell of the homogenous sheets are 

considered asa supercell which consists of two superatoms, denoted as Ŭ and ɓ (see Figure 4b, c and d). 

Then the superatoms can be classified into type A0 when there is a hexagon in the center of each 

superatom and type AC when there is an atom. A vector dependence of the classification is identified by 

defining vectors RŬ and Rɓ (green arrow in Figure 4) connecting the vertex and the center (red dashed 

circle) of the superatoms Ŭ and ɓ, respectively. According to group theoretical analysis, Shima and Aoki 



claimed that the triangular lattices of A0 and AC types are semiconducting and semi-metallic, 

respectively.
38

 In a similar way, we find that both the triangular lattices of the semimetallic sheets are 

composed of two AC type superatoms, while that of a semiconductive sheet can be considered as 

consisting of A0 and AC type superatoms (in Figure S8). An exception is the (1,0) structure, but its Ŭ 

superatom contains one more Si atom than the ɓ superatom. In this respect, the asymmetry between the 

two super-atoms is still in place, resulting in the direct band gap. Interestingly, the direct band gap of  

(1,0) structure is formed at the ũ point, in contrast to those in other semiconductive homogenous sheets 

that arise at the K point.  

CONCLUSIONS: 

In summary, we have performed a comprehensive structural search on the 2D SixC1-x sheet with 

0<x<1 by using cluster expansion method in conjunction with density functional calculations. All the 

revealed ground state structures of 2D SixC1-x are proved to possess high thermodynamic stability and 

show strong dependence on x. Generally, we obtained two types of 2D SixC1-x structures, a homogenous 

phase with spatially well dispersed dopants and an in-plane hybrid phase consisting of SiC and graphene 

(or silicene for x>0.5) domains. All the in-plane hybrid structures are semiconductors with a band gap 

widely tunable with varying x, increasing from 0 eV at x=0 or 1 to 2.87 eV at x=0.5. The mechanism for 

the band gap opening can be ascribed to the quantum confinement effect imposed by the SiC domains. In 

contrast, the homogenous structures can be semiconductive or remain metallic depending on a superlattice 

vector connecting two adjacent doping sites, complying with a rule similar to the gap-chirality 

relationship in carbon nanotubes. Our findings feature the SixC1-xsheets as a new type of 2D materials 

with a rich variety of electronic properties for versatile applications, and may open a wealth of 

opportunities for future development of nanoscale devices that can be integrated seamlessly with existing 

silicon electronics.  

METHODS: 

To search the ground state structures at different silicon concentrations, we considered SixC1-x as an 

alloy system and use the state-of-the-art CE method
39

 established in the alloy theory, in which the alloy 

Hamiltonian is mapped onto a generalized Ising Hamiltonian. In the CE formalism, any function of a 

given configuration ů = {ů1, ů2, é, ůN} of ůi is fitted through a multivariate expansion in site occupancy 

variables (spins) ůi. Zero-index orthonormal polynomials have the value of 1 , and therefore are not 

included into the sum. For a two-component alloy, the cluster expansion of the mixing energy (per site) 

can be written as:
40
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Here, lattice symmetry has been taken into account by forming symmetry-adapted expansion coefficients 

for equivalent clusters. Like in the general case, Ŭ in this equation enumerates all lattice-symmetry 

inequivalent subsets (clusters) of a full set of lattice sites, mŬ is the number of clusters that are equivalent 

to Ŭ by the lattice symmetry (divided by the total number of lattice sitesN), and coefficients JŬ are the 

effective cluster interactions (ECI). Angle brackets designate the arithmetic average over all sets of points 

i={q, q
'
, ..., q

''
} that are equivalent to the subset represented by Ŭ through lattice symmetry. Averaging 

over the symmetry-equivalent clusters is possible due to the independence of the effective cluster 

interactions JŬ on the spin configurations. This averaging reduces the numbers of independent ECI 

coefficients. The discrete site occupation variables ůi are assigned values of +1 and -1in a binary system. 

The cluster expansions equation converges rapidly with cluster size, yielding an exact result in the 

untruncated form. In this work, the CE fitting of the mixing energy and the search for the thermodynamic 

ground state are carried out with the Alloy-Theoretic Automated Toolkit (ATAT) code.
40

 The formation 

energies of alloy structures generated by ATAT and used in the fitting procedure are computed at the 

density-functional theory (DFT) level. To minimize the effect of lattice mismatch, we divided our CE 

calculations into two parts: CE-1, from graphene to Si0.5C0.5, and CE-2, from Si0.5C0.5 to silicene as shown 

in Figure 1e. Total energies and band structures of the as-produced ground state structures are calculated 

using Perdew-Burke-Ernzerhof parametrization (PBE) 
41

 of generalized gradient approximation (GGA) 

and projector-augmented wave (PAW) potentials,
42-43

 as implemented in Vienna Ab Initio Simulation 

Package (VASP).
44

 The plane-wave cutoff is set to 520 eV and the convergence tolerance was set as 10
-4 

eV in electronic steps and 0.05 eV/Å in force. About 12 Å vacuum space is employed to avoid spurious 

interaction between periodic layers. The Monkhorst-Pack grid k-points are employed over the Brillouin 

zone for all the structures, and k-point densities for different-sized supercells are approximately the same. 

21 k-points with line mode between the two high symmetry k-points are used to further investigate the 

electronic structures on the basis of the equilibrium structures. To evaluate the relative stability, we 

collect structures with lowest energies at each concentration and calculate the cohesive energy (Ecoh) and 

molar formation energy (ŭF) for a SixC1-x alloy, which are defined as:
45
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where the Etotal and n are the total energy and total number of atoms of the system, ESi and EC represent 

chemical potentials of single carbon and silicon atoms, and µSi and µC represent chemical potentials of 

carbon and silicon in graphene and silicene, respectively. Molecular dynamics (MD) simulations, as 

implemented in the VASP code, are performed to verify the thermal stability of the SixC1-xmonolayers 

with enlarged supercells at 2500 K in a NVT ensemble, which lasted for 10ps with a time step of 1fs. 

Supporting Information Available: The Supporting Information is available free of charge via the 

Internet at http://pubs.acs.org. 
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Figure 1. (a)-(d) Atomic structures of four typical SixC1-xsheets found by the CE method. The label-

fraction represents the ratio of Si and total atoms in a unit cell. (a) and (d) are hybrid structures, (b) and (c) 

are homogenous structures with well dispersed dopants. (e) and (f) are cohesive energy (Ecoh) and Molar 

formation energy (ŭF) for the ground state SixC1-x sheet as the function of x, respectively. Straight line 

connects Ecoh and ŭF of graphene and silicene, respectively. Insets of (e): The top and side views of the 

primitive cell adopted in CE-1 and CE-2 calculations, respectively. The gray and yellow ball represent the 

carbon and silicon atoms, and the gray squares and yellow hexagons represent the predicted structures 

from the CE-1 and CE-2 calculations, respectively. 

 



 

Figure 2. Calculated band gaps of the ground state SixC1-x sheets as the function of x. Blue solid triangles, 

black hollow hexagons and red solid hexagons designate semi-metallic, indirect and direct band gap 

structures, respectively. The structures with black points are reported in previous works,
16, 23, 25

 and our 

results agree with these work. 

 



 

 

Figure 3. (a) Atomic structure of the Si0.1C0.9 sheet. Shaded regions highlight the SiC domains which 

separate graphene into parallel-aligned nanoribbon. (b) PBE-based band structure and partial charge 

density corresponding to the VBM and CBM of the Si0.1C0.9 sheet. (c) Plane-averaged electrostatic 

potential along Z direction of the Si0.1C0.9 sheet. The background is the charge density together with 

atomic positions, using the same scale as marked by the horizontal axis.   



 

Figure 4. (a) Band gaps of representative homogenous SixC1-xstructures as a function of superlattice 

vector ranging from (1,0) to (3,1). Inset is the (1,1) homogenous structure characterized by the 

superlattice vector R=1a1+ 1a2.The blue and red lines represent the Si or C doped graphene or silicene, 

respectively. (b)-(d) Band structures of the (1,0), (1,1) and (2,0) structures and the partial charge densities 

of the states near the Fermi level. The superatom models are illustrated in each plot of the VBM charge 

density.  
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