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Abstract

Recently synthesized graphitic honeycomb structures, consisting of sp2-bonded graphene nanoribbons con-

nected by sp3-bonded “hinges” are investigated theoretically. Honeycombs of different “wall-chiralities”

(armchair and zigzag) and sizes are studied. Simulation of the reconstruction of the hinges shows that zigzag

honeycombs spontaneously rearrange, resulting in a new structure. Elastic mechanical simulations show that

the Young’s modulus of the structures is determined solely by the density of the hinges, regardless of the

structural orientation or regularity. Compression tests display a distinct behavior of self-localized deforma-

tion, similar to that of macroscopic honeycombs. Interestingly, the failure strain of the honeycomb structure

is affected significantly by its lattice size and geometrical regularity. Electronic band structures of differ-

ent types of honeycombs are calculated, showing that the conductivity of armchair honeycombs follows the

well-known “3n”-dependency, while zigzag honeycombs are always metallic.
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1. Introduction

The search for new allotropes of carbon has been

an enduring effort for materials scientists [1]. Since

the advent of nanoscience, this endeavor has been

met with significant success leading to experimental

discovery of fullerenes [2, 3], nanotubes (CNTs) [4],

and graphene [5]. Atomistic simulations have pro-
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vided scientists with a powerful new tool to explore

potential carbon allotropes [6]. Hypothetical al-

lotropes such as graphyne [7], carbyne [8], and many

other possible candidates were proposed [9, 10, 11],

with the likelihood of being experimentally realized

varying by each case. With diamond and graphite

being the most common carbon allotropes, a car-

bon allotrope combining the sp3-bonded atoms of

the former and the sp2-bonded atoms of the lat-

ter is not only interesting, but may also possess

unique properties that may give rise to potential ap-

plications [12, 13]. Here we use the term “honey-
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comb” [14] to denote this type of carbon modifica-

tion.

An early scheme for the honeycomb structure was

proposed by Karfunkel and Dressler [15]. The ba-

sic geometry was constructed, and electronic struc-

ture calculations of the density of states using the

modified neglect of diatomic overlap method were

carried out. They concluded that this hypothetical

structure had “stability comparable to that of dia-

mond,” and may exist in nature but has been over-

looked. They also predicted that it may simultane-

ously display the properties of diamond (along the

main axis) and graphite (orthogonally) [15]. Bal-

aban et al. [13] investigated the honeycomb struc-

ture again (denoted as “diamond-graphite hybrids”),

and predicted that it may be conductive along the

graphitic ribbons. Bucknum et al. [16] proposed a

structure (later named ’hexagonite’) that shares sim-

ilar features, albeit much denser than the porous hon-

eycomb.

More recently, Park and Ihm [17] performed a

computational study on the electronic structure and

mechanical stability of the honeycomb. They used ab

initio calculations for smaller cells, and tight bind-

ing for larger cells, and discovered that the electronic

structure of the honeycomb follows a similar size de-

pendence as that of zigzag nanotubes. When the size

N is equal to an integer times 3/2, the honeycomb

is metallic, and otherwise semiconducting [17]. Re-

garding stability, they confirmed that the honeycomb

stability is comparable to that of diamond, also con-

sistent with previous works. A type of stable carbon

foam was also proposed in [18], with structure very

similar to the honeycomb, and reported to be metallic

and structurally rigid.

Over the last decade, there has been a sustained

activity in honeycomb research [19, 20, 21]. Kawai

et al. [20] proposed a carbon architecture made up of

two graphene sheets intersecting each other, which

is essentially the junction (“hinge”) component of

the honeycomb, and Ribeiro et al. [21] studied vari-

ous possible diamond–graphite hybrid structures, in-

cluding the honeycomb lattice, and the transition en-

ergy barrier and pressure required for their formation

from graphite. Bucknum et al. [22] studied the cal-

culated diffraction pattern for the density-functional

theory (DFT) optimized hexagonite structures and

reported that the hexagonite can potentially be syn-

thesized from cold compression of CNTs. This

might also be possible for the lab fabrication of the

honeycomb because of the high structural similar-

ity of the two allotropes. Kuc and Seifert [23] con-

ducted a density-functional based tight-binding (DF-

TB) study on the electronic band structure of the

honeycomb lattice. They concluded that the honey-

comb (called carbon foam in [23]) is mechanically

stable although may become unstable against shear

forces if size increases, and electronically analogous

to CNTs: all armchair foams (in nanotube nomen-

clature) are metallic, and for zigzag structures, those

with distances between junctions that are multiples

of three hexagonal units are metallic as well, and oth-
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Figure 1: Structure of the honeycomb. (a) Armchair honeycomb lattice with Na = 5, using balls-and-stick representation for the

unit cell. (b) Zigzag honeycomb lattice with Nz = 2. Left highlight: a pristine hinge, with a zigzag unit cell marked in purple.

Right highlight: a reconstructed hinge, with hinge and edge atoms marked in orange. Inset: energy per unit cell profile for the

reconstruction process.

erwise semiconducting. This work also suggested

that the honeycomb structures have great potential

for hydrogen storage due to their high porosity and

accessibility [23]. Gas adsorption for the honeycomb

has since attracted great research interest [14, 24].

Besides regular honeycomb structures with uni-

form pores and periodicity, several other structures

of related geometry have also been proposed. Zhu et

al. [25] studied the mechanical and magnetic prop-

erty of a “tri-wing graphene nanoribbon” that resem-

bles the junctions in the honeycomb, and comparable

to the structure proposed by Kawai et al. [20]. Wu et

al. [26] proposed a graphite structure that is essen-

tially based on the honeycomb lattice. Despite the

intensive theoretical effort, solid evidence of the ex-

perimental synthesis of the honeycomb was not pre-

sented. Very recently, Krainyukova and Zubarev [14]

finally have observed exceptionally stable honey-

comb lattices obtained by deposition of vacuum-

sublimated graphite, and demonstrated that they pos-

sess high absorption level superior to that of other

carbon forms such as CNTs [14]. They envisioned

the honeycomb’s application in both gas (hydrogen

included) absorption, and structural composites [14].

2. Computational details

All honeycomb geometries are relaxed with DF-

TB [27] and the energy barrier for reconstruc-

tion of the junctions are determined by using the

nudged elastic band method [28], using the DFTB+

code [29]. Electronic band structures are calculated

with the VASP code [30], employing projector aug-

mented wave pseudopotentials [31], and the local-

density approximation (LDA) to the electronic ex-

change and correlation. A plane wave basis with

the cutoff energy of 400 eV was used. Linear

elastic properties and indentation response are ob-

tained from empirical force-field simulations using
3



LAMMPS [32] and the AIREBO [33] potential.

3. Results and discussion

3.1. Atomic structure and stability

A honeycomb lattice can be viewed as multiple

junctions, we refer to as “hinges”, represented by

a single line of carbon atoms connecting graphene

nanoribbons (GNRs) running in parallel along the z-

axis. According to the orientation of the GNRs, hon-

eycombs can be classified into armchair and zigzag.

Zigzag honeycombs can be further classified into

pristine and reconstructed, depending on the config-

uration of the hinges. Regardless of the above men-

tioned classifications, all honeycomb lattices share

common structural features. Because of the hexag-

onal lattice, the primitive cell consists of two hinges,

and three GNRs. The size of the primitive cell in the

xy-plane grows with the width of the GNRs, mea-

sured by the number of dimer or zigzag lines, Na or

Nz, for the armchair and zigzag honeycombs, respec-

tively. Along the z-axis, the lattice size remains con-

stant regardless of the width of the GNR.

Figure 1 shows the classification of honeycombs

by orientation and hinge type. Our DFT calculations

show the cohesive energy of the honeycomb to be

7.56 eV/atom, varying little with the size of the unit

cell. This energy is comparable with that of graphene

(7.90 eV/atom) and diamond (7.73 eV/atom), sug-

gesting that the structure is highly stable thermody-

namically. The overall thermal stability of the arm-

chair and zigzag honeycombs has also been con-

firmed with constant-temperature MD simulations at

300 K and 1000 K. However, a more detailed study

reveals kinetic accessibility of a more stable state in

zigzag honeycomb, as discussed below.

Among all the honeycombs mentioned above, the

zigzag configuration is of particular interest due to

its geometry apparently made up of only sp2-bonded

atoms. The first experimental report suggests that all

of its atoms have sp2 coordination and its structure

is zigzag [14]. In this configuration, however, the

presence of staggered dihedral geometries near the

hinge atoms raises the question of how stable such

all-sp2 zigzag honeycomb structure would be. Previ-

ous work by Wu et al. [26] suggested that the zigzag

lattice would converge into a lower-energy config-

uration with a 1 × 1 × 2 reconstruction but did not

explicitly state if zigzag is an unstable configuration.

Here we analyze the stability of the zigzag honey-

comb, and show that zigzag is a metastable state,

with a very low energy barrier for reconstruction,

and reconstructing even under a small perturbation.

Figure 1b shows the mechanism for the hinge recon-

struction of zigzag honeycombs. The reconstructed

structure is considerably more energetically favor-

able than the zigzag structure, with an energy dif-

ference of 3.34 eV per unit cell, or 0.34 eV/Å of

hinge length, while the transition energy barrier for

this process is negligible. This means that the zigzag

lattice is a local minimum, albeit a shallow one, and

would reconstruct under small mechanical or thermal

fluctuations. To verify our assumption we conducted
4



Figure 2: Electronic band structures of the honeycombs. (a) Armchair, Na = 4. (b) Armchair, Na = 5. (c) Zigzag, Nz = 19. (d)

Reconstructed, Nz = 15. Armchair honeycombs follow the “3n” rule, whereas all zigzag honeycombs are metallic. The hinge states

close to Fermi level near the A point of the BZ of zigzag honeycombs are analogous to the edge states in zigzag nanoribbons.

a molecular dynamics simulation of zigzag lattice.

The system was first optimized, and then coupled

with a thermostat at 273 K. We observe that, during

the MD simulation, the hinge atoms irrevocably form

bonds between every two atoms, effectively complet-

ing the reconstruction process.

3.2. Basic electronic properties

From mechanical point of view, the distinction of

honeycombs into armchair and zigzag is not essen-

tial due to the elastic in-plane isotropy of graphene

sheets. At the same time, electronic properties would

be very sensitive to the GNR chirality. We conducted

band structure calculations of armchair, zigzag, and

reconstructed zigzag periodic honeycomb lattices of

various sizes aiming to elucidate the effect of size

and chirality. The geometries were optimized at

the DFT level using the LDA functional. We clas-

sify the structures using the usual convention [34]

for GNRs. The armchair structure size is defined

by the number Na of dimer lines along the ribbon,

excluding the hinge atoms and it implies the rela-

tion Na = 2N − 1, where N was used in Ref. [17].

We find that the band structures of armchair honey-

combs follow the so-called “3n” rule, where struc-

tures with sizes Na = 3n and 3n + 1 are semicon-

ducting, and with Na = 3n + 2 – metallic, simi-

lar to armchair GNRs [34]. Previous tight binding

calculations [17, 23] have also indicated the valid-

ity of the “3n” rule for armchair honeycombs. Here,

hinge atoms are not considered as part of the ribbon
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when determining Na, as they are tetrahedrally coor-

dinated. The remaining atoms have graphene geom-

etry corresponding to the sp2 hybridization and con-

tribute to the band structure that is similar to that of

nanoribbons. One important difference in the elec-

tronic properties of armchair nanoribbons and hon-

eycombs is that the honeycombs with Na = 3n+2 ap-

pear to be truly metallic, whereas nanoribbons open a

small band gap when changing the description from

the nearest-neighbor tight binding to DFT [34].

A total of 20 armchair structures were calculated,

with Na = 1–20. The only exception from the “3n”

rule was found for the smallest structure Na = 1,

which was metallic. The LDA band structures of the

semiconducting (Na = 4) and metallic (Na = 5) arm-

chair honeycombs are shown in Figs. 2a and b. The

band structures for all calculated armchair honey-

combs are also shown in the supplementary Fig. S1.

It is seen from Fig 2b and Fig. S1 that, unlike arm-

chair nanoribbons, the metallic behavior of honey-

combs with Na = 3n + 2 is quite robust, with bands

crossing the Fermi level along multiple directions in

the Brillouin zone (BZ).

In contrast to the armchair structures, zigzag hon-

eycombs of all sizes are found to be metallic, inde-

pendent of whether the hinges were reconstructed or

not. All the structures were nonmagnetic. The size

Nz of the zigzag honeycomb is defined by the num-

ber of the zigzag chains forming the wall, Fig. 1b.

We have carried out geometry optimization and band

structure calculations for the zigzag honeycombs

with sizes Nz = 1–20. The band structure of zigzag

honeycomb of size Nz = 19 with unreconstructed

hinges is shown in Fig. 2c. Further orbital analy-

ses show that the states near the Fermi level in the

vicinity of the A point of the BZ are the hinge states,

which are analogous to the edge states in zigzag

nanoribbons. Reconstructing the hinges preserves

the structure metallicity, as shown in Fig. 2d for the

structure of size Nz = 15. The hinge states are now

located around the Γ point due to zone folding from

the doubling of the lattice period in the z direction.

Unlike zigzag graphene ribbons which have small

band gaps [34], there are several bands crossing the

Fermi level in zigzag honeycombs, rendering them

metallic. More band structures for zigzag and recon-

structed zigzag honeycombs are shown in the supple-

mentary Figs. S2 and S3, respectively. We note that

the realistic honeycomb structures [14] are more ir-

regular than the ones considered here, and thus have

a more complicated electronic structure.

3.3. Elastic properties

The honeycomb possesses some of the most in-

teresting elastic properties among carbon allotropes

due to its high anisotropy. Structurally, the honey-

comb lattice is densely packed along the z-direction,

and its graphene nanoribbon walls form a large-scale

honeycomb lattice also in the xy-plane. This system

can be viewed as a nanoscale cellular solid [35], with

regular hexagonal prismatic cells.

If one treats the graphene nanoribbons as “walls”

of width d and uniform, constant thickness h, in anal-
6
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Figure 3: Elastic properties of the honeycomb. (a) Density vs. lattice size for honeycomb lattices; (b) Young’s modulus of

honeycombs, with both computed values (symbols) and analytic dependencies ∼ (h/d)m (curves), with m = 1 for Yx,z, and m = 3

for Ỹx. The inset shows the Pxx pressure as a function of strain for the honeycomb with Nz = 8, d ' 18.5 Å. (c) In-plane Young’s

modulus Yx for armchair and zigzag honeycombs (symbols); the full line corresponds to that in panel (b). (d) Comparison of

honeycombs specific Young’s moduli with that of diamond (dashed line).

ogy to the continuum case, the ultimate characteristic

of the honeycomb is its dimensionless relative den-

sity ρ̄ = ρ/ρG = C h/d, where ρ is the density of the

honeycomb lattice and ρG is that of graphene, and

generally the constant C ∼ 1. Figure 3a shows the

actual ρ (symbols) of all zigzag structures considered

along with the corresponding 1/d-fit, using the stan-

dard van der Waals thickness h = 3.4 Å, resulting in

an effective ρG ' 2 g/cm3, with C = 2/
√

3 for the

honeycomb lattice [35].

Within the xy-plane the regular-hexagonal honey-

comb lattice is elastically isotropic [36] and from

classical elasticity of cellular materials [35] the

Young’s modulus is expected to scale as Y/YG ∼

(h/d)3, YG being graphene modulus. Our calcula-

tions, however, reveal a more complex behavior of

the carbon honeycombs, as summarized in Fig. 3b.

At small uniaxial compressive strain ε . 1 % (cf.

inset in Fig. 3b) the lattice deformation is dominated

by compression of the graphene walls which can also

pivot around the hinges. In this regime, as clearly

seen for the example of Yx, the in-plane modulus

7



Figure 4: Compression behavior of the honeycomb. (a) Left: localized collapse of the honeycomb lattice; Right: zoomed-in view

of the compression process of a honeycomb lattice, with each step numbered. (b) Stress-strain and energy-strain curves of the

honeycomb during compression, with the position of each step marked. (c) Lattice size dependency of failure strain. (d) Defect-

density dependency of failure strain. In (c) and (d) the colors of the matrices are alternated for easier view and comparison.

scales as the density, ∼ h/d. Indeed, consider the

definition Y = σ(ε)/ε = F/A0
∆L/L0

, where F is the elas-

tic response force per unit cell. Taking the zigzag

honeycomb as an example, along the x-direction we

have

Yx =
F/Ax

∆L/L0
=

F/Ax

3∆lx/3lx
=

F/Ax

f /ax
YG =

F/
√

3lxlz

f /hlz
YG.

(1)

Here, lx = d is the width of the constituent GNR

in x-direction, lz is the length of the GNR wall in z-

direction, f is the response force of the GNR. In this

case, we have F = f , and therefore

Yx/YG =
1
√

3

h
d
. (2)

For a quantitative estimate, setting YG = 1 TPa, we

get

Yx(d) =
1.96 Å

d
TPa. (3)

This analytic expression is plotted in Fig. 3b and ap-

pears to describe well the actually calculated Yx. For

larger ε, the graphene walls bend and we recover the

familiar scaling [35], Ỹ/YG ∼ (h/d)3, where the tilde

is used merely to distinguish the modulus character-

istic for this regime.

Similarly, we deduce the Young’s modulus of the

honeycomb in z-direction (note that here for an or-

thorhombic non primitive unit cell we have F = 6 f ):

Yz/YG =
F/Az

f /az
=

F/3
√

3d2

f /hd
=

2
√

3

h
d
. (4)
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From Eqs. (2) and (4) it follows that the in-plane/out-

of-plane anisotropy of the honeycomb modulus is

Yx/Yz = 1/2.

We have also found that the Young’s moduli of the

honeycomb structure is completely insensitive to the

lattice orientation of the GNRs, as the armchair and

zigzag honeycombs show overlapping trend lines

of Young’s moduli vs. lattice size as shown in

Fig. 3c. Interestingly, elastic simulations on recon-

structed honeycombs show exactly the same values

of Young’s moduli as those of zigzags.

The results discussed above suggest that the elas-

tic strength of the honeycomb is only affected by the

density of hinges. This may be of convenience to

gauge or tune the elastic mechanical properties of

experimentally obtained honeycombs, as hinge den-

sity is the only relevant parameter. We note also that

the modulus of the honeycomb lattice per unit den-

sity (specific modulus) is comparable to, and specif-

ically in z-direction, is higher than that of diamond,

Fig. 3d. This could possibly mean that, with larger

d, the honeycomb is one of the strongest foam-like

material ever synthesized.

3.4. Nanomechanical nonlinear response

3.4.1. Uniaxial compression

Another important mechanical aspect of graphene

honeycombs lies in their nonlinear response. The in-

teresting phenomenon of localized compression was

observed in macroscopic “honeycombs” made of

stacked straws [37]. Albeit microscopic, the honey-

comb structure is similar to the macroscopic “honey-

combs” regarding its highly organized porosity. With

this apparent structural similarity, would the hon-

eycomb also exhibit the self-localized deformation

upon compression? Furthermore, if this localization

exists, would the yield strain be affected by the lat-

tice size and/or defects in the honeycomb? To an-

swer these questions, we conduct MD simulations of

uniaxial compression on bulk honeycomb in the di-

rection perpendicular to the hinges.

After initial optimization, the simulation box is re-

duced along the y-axis in 700 steps to simulate uniax-

ial compression. In each compression step, the lattice

size is reduced by a constant length equal to 0.1% of

the original cell size Ly, and fully relaxed along the

two other axes. Both geometrical optimization and

thermal movements are performed in each step. By

the end of the simulation, the box is compressed by

70%.

Our first set of simulations shows that, except for

the smallest lattices, self-localized compression oc-

curs for all honeycombs, regardless of lattice size or

size of simulation box. The lattice first compress uni-

formly with walls of each cell bent, until at a critical

strain level, the walls of one lattice touch and adhere,

forming a nucleation point for the subsequent col-

lapse of a line of cells, while the other lattices outside

of the band remain intact, hence “localized compres-

sion”, Fig. 4a. The inter-wall adhesion occurs via

van der Waals interactions, without any rearrange-

ments of covalent bonds. If further compression is

applied, the system may show several more steps of
9



localized compression, until completely collapsed.

Each localized compression step is irreversible. We

have calculated the DFT-LDA band structure of a

collapsed honeycomb and compared it with the one

of the original system. The band structure of the col-

lapsed zigzag honeycomb of size Nz = 6 is shown

in Fig. S4. It is seen that the band structure is mod-

ified; however, the system remains metallic and the

main features of electronic bands are preserved. This

is not very surprising as the topology (connectivity)

of the system does not change as a result of the col-

lapse. No new bonds are formed, and interatomic

distances do not change significantly, as collapse oc-

curs chiefly through changing the bond angles. Thus,

in the nearest-neighbor tight binding picture the elec-

tronic structure of the system will stay nearly same.

In the actual DFT calculation, the changes of the

band structure will be more significant, but dras-

tic changes are not expected, as also evidenced by

Fig. S4.

We next look into the dependency of failure strain

εcr on the lattice size. The systems simulated con-

tain unit cells varying from Nz = 4 to Nz = 62.

The size of the simulation boxes is set as close to

50 × 50 nm2 as possible, by repeating the unit cells

in x- and y-directions, although some minor varia-

tions are inevitable. Since our preliminary simula-

tions show that the failure strain is not sensitive to

the size of the simulation box, we can be assured

that the difference we observe between systems re-

sults entirely from different lattice sizes, rather than

different simulation box sizes. Our results show that

the buckling strain is ∼ 10% for systems of differ-

ent sizes, Fig. 4b. Interestingly, this phenomenon

can be explained by the Euler buckling theory. For

a beam of length d, moment of inertia I, and Young’s

modulus Y , we have the critical load for buckling as

Pcr = n2π2YI/d2. Here n is the end constraint fac-

tor for beams, with n = 1 for both ends hinged, and

n = 2 for both ends fixed. It can be deducted that for

honeycomb structures of regular hexagons, regard-

less of the wall size d, the critical strain for buckling

is always 10% [35]. This is confirmed by our simula-

tion results of different lattice sizes. Figure 4b shows

the result for the Nz = 26 structure. At the same time,

the failure strain of the honeycomb increases with the

lattice size, approaching about 60% for large lattice

sizes, as seen in Fig. 4c.

Next, we conduct a second set of simulations to

analyze the effect of defects on the localized com-

pression behavior, Fig. 4d. For all the systems in

this group, the simulation box is about 48 × 50 nm2

in the xy-plane, and one unit cell in z-direction, and

contains 8880 atoms. Four different honeycomb sys-

tems with different defect concentrations are studied.

The first was defect free, the second contains a single

Stone–Wales (SW) defect in the whole box, the third

one contains 30% defective cells, and the fourth has

75% defective cells. MD simulations shows that the

energy of a single SW defect is 14.0 eV. Considering

that a SW defect involves relocation of 122 atoms,

this energy penalty is minimal and is not expected to
10



Figure 5: Simulated indentation (force F vs. depth ∆z) of the

zigzag honeycomb along z-direction for different sizes d. Ar-

rows on indicate the direction of ∆z change. The inset shows

the indenter–honeycomb for the largest d at maximum com-

pression/loading depth.

significantly affect the stability of the system.

Based on the above compression tests, one can

conclude that i) microscopic honeycombs do exhibit

self-localized compression behavior, similar to its

macroscopic counterpart; ii) the critical strain of the

localized compression is increases the lattice size d,

approaching ' 60% for the largest lattices; iii) de-

fects have a strong effect on the toughness of the hon-

eycomb, with more defects leading to easier failure

under uniaxial compression by providing nucleation

sites for localized compression to initiate. The last

finding would be significant for realistic structures

with defects, where, compared to the perfect case,

one could expect a nearly twofold reduction in the

failure strain.

3.4.2. Indentation test of the honeycomb lattice

In order to probe the non-linear response of the

honeycomb along the z-direction, we perform MD

indentation tests. This setup corresponds closely to

typical experimental tests. In each test, a finite-size

honeycomb slab of dimensions 120 × 120 × 20 Å3 is

placed in a vacuum simulation box of 300 × 300 ×

300 Å3. The test is repeated three times for honey-

combs of different lattice sizes Nz. After relaxation

and thermal equilibration, a spherical indenter with a

diameter of 60 Å is pressed down onto the slab until

reaching the vertical displacement ∆z of 15 Å. The

indentation process is slow enough to allow the sys-

tem sufficient time steps to thermally equilibrate. Af-

ter reaching the vertical limit of 15 Å, the system is

unloaded by moving the indenter up and the slab may

retain some deformation (if plastic deformation has

occurred) or recover to the original shape elastically.

The procedure is similar to one used in our earlier

work [38].

From the result of our indentation tests, we see

that, honeycomb lattices of all three tested sizes

(Nz = 2, 4, and 6) cannot restore elastically after in-

dentation, resulting in hysteresis in the load vs. in-

dentation depth curves, Fig. 5. During the inden-

tation, the structures undergo significant plastic de-

formations realized through rearrangements of co-

valent bonds. Such indentations could thus poten-

tially be useful for creation of covalent interlayer
11



links [38, 39, 40]. We also find that similar to lin-

ear elasticity, honeycombs with smaller lattice sizes

have stronger mechanical response against indenta-

tion.

4. Conclusion

In this work, we studied the structural varia-

tion, electronic band structure, elastic properties,

and localized compression of the graphitic honey-

comb. Structurally, we classify honeycombs into

three types according to their lattice orientation:

armchair, zigzag, and reconstructed, among which

zigzag and reconstructed share the GNR orientation,

and armchair and reconstructed share the same hinge

geometry. The stability of zigzag honeycombs is in-

vestigated, and we find that the zigzag is a metastable

state that would immediately transform into the re-

constructed honeycomb, as confirmed subsequently

by MD simulations. The electronic band structure

calculations show that armchair honeycombs do fol-

low a periodic law analogous to armchair GNRs or

zigzag CNTs, as reported previously. It also reveals

that hinges play a bigger role than GNRs for the elec-

tronic structure of reconstructed honeycombs. The

linear elastic mechanical tests reveal that the elastic

strength of the honeycomb is dominated by the hinge

density and is unaffected by the types of hinges and

GNRs. Finally, we observe a highly localized com-

pression behavior of the honeycomb, the yield strain

of which is largely affected by the lattice size and

the defects which provide nucleation sites for failure

initiation.
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[31] P. E. Blöchl, Projector augmented-wave method, Phys.

Rev. B 50 (1994) 17953.

[32] S. Plimpton, Fast parallel algorithms for short-range

molecular dynamics, J. Comput. Phys. 117 (1995) 1–19.

[33] S. J. Stuart, A. B. Tutein, J. A. Harrison, A reactive po-

tential for hydrocarbons with intermolecular interactions,

J. Chem. Phys. 112 (2000) 6472–6486.

[34] Y.-W. Son, M. L. Cohen, S. G. Louie, Energy gaps in

graphene nanoribbons, Phys. Rev. Lett. 97 (21) (2006)

216803.

[35] L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and

Properties, Cambridge Solid State Science Series, Cam-

bridge University Press, 1999.

[36] L. D. Landau, E. M. Lifshitz, Theory of elasticity, Vol. VII

of Course of theoretical physics, Pergamon Press, Oxford,

1986.

[37] S. Papka, S. Kyriakides, Biaxial crushing of

honeycombs:–Part 1: Experiments, Int. J. Solids

Struct. 36 (1999) 4367–4396.

[38] S. Ozden, Y. Yang, C. S. Tiwary, S. Bhowmick, S. Asif,

E. S. Penev, B. I. Yakobson, P. M. Ajayan, Indenta-

tion tests reveal geometry-regulated stiffening of nan-

otube junctions, Nano Lett. 16 (2016) 232–236.

[39] T. Trevethan, P. Dyulgerova, C. D. Latham, M. I. Heggie,

C. R. Seabourne, A. J. Scott, P. R. Briddon, M. J. Rayson,

Extended interplanar linking in graphite formed from va-

cancy aggregates, Phys. Rev. Lett. 111 (2013) 095501.

doi:10.1103/PhysRevLett.111.095501.

[40] R. P. Hardikar, A. Samanta, A. Manjanath, A. K.

Singh, Vacancy mediated clipping of multi-

layered graphene: A precursor for 1, 2 and 3d

carbon structures, Carbon 94 (2015) 67 – 72.

doi:http://dx.doi.org/10.1016/j.carbon.2015.06.040.

14


